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Our knowledge discovery algorithm employs a combination of association rule 

mining and graph mining to identify frequent spatial proximity relationships in genomic 

data where the data is viewed as a one-dimensional space. We apply mining techniques 

and metrics from association rule mining to identify frequently co-occurring features in 

genomes followed by graph mining to extract sets of co-occurring features.  

Using a case study of ab initio repeat finding, we have shown that our algorithm, 

ProxMiner, can be successfully applied to identify weakly conserved patterns among 

features in genomic data. The application of pairwise spatial relationships increases the 

sensitivity of our algorithm while the use of a confidence threshold based on false 

discovery rate reduces the noise in our results. Unlike available defragmentation 

algorithms, ProxMiner discovers associations among ab initio repeat families to identify 

larger more complete repeat families. ProxMiner will increase the effectiveness of repeat 

discovery techniques for newly sequenced genomes where ab initio repeat finders are 

only able to identify partial repeat families.  
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In this dissertation, we provide two detailed examples of ProxMiner-discovered 

novel repeat families and one example of a known rice repeat family that has been 

extended by ProxMiner. These examples encompass some of the different types of repeat 

families that can be discovered by our algorithm. We have also discovered many other 

potentially interesting novel repeat families that can be further studied by biologists. 

 

Keywords: association rule mining, spatial rules, repeat, defragmentation, graph mining, 

novel repeat regions, DNA 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Technological breakthroughs in DNA sequencing during the last decade [2] have 

caused an exponential increase in the rate at which genome sequence is being generated 

[3, 4]. These “second generation” sequencing technologies are already taxing the limits of 

current data mining methods and systems, and with “third generation” sequencing 

technologies on the horizon, this problem will only be exacerbated [2, 3, 5]. Genomic 

sequence data by itself, however, is of limited value [6]. Substantive value is derived 

from sequence by identifying functional elements and developing an understanding of 

how these elements contribute to the evolution, survival, and propagation of an organism 

[6, 7]. 

The focus of this dissertation is the development of algorithms to discover 

consistently recurring spatial patterns among features in genomic sequence. Genome 

sequence may be viewed computationally as a string of letters from a 4-letter alphabet of 

nucleotides (A,T,C,G) and therefore as a one-dimensional search space. Although there 

has been substantial research in the development of algorithms for identifying different 

constituents of the genome such as genes [8, 9], small non-coding RNAs [10], promoters 

[11-13], repeats [14, 15], etc., there has been little previous research investigating spatial 

relationships among these features. Our approach for finding such relationships among 
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groups of features in the genome uses a combination of association rule mining [16] and 

graph-based mining [17] as shown in Figure 1.1. We apply association rule mining to 

discover frequently occurring proximity relationships among features of the genome. 

Association rule metrics [16] are used to measure the strength of discovered spatial 

relationships. All qualifying association rules, each denoting a spatial relationship 

between two features, are mapped into a directed graph and related features are identified 

by extracting all the connected components. Each set of related features represents a 

potentially interesting recurring spatial pattern of features. 

 

 

Figure 1.1 

Hybrid spatial association rule mining approach 
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Possible applications for our data mining method include discovery of proximity 

relationships among gene families, gene and regulatory elements, microRNAs and genes, 

etc. We have elected to demonstrate the utility of our new data mining approach in the 

domain of ab initio repeat finding in genomes. Repetitive DNA sequences constitute a 

major portion of most genomes, but repeats are one of the less explored features of 

genomes as compared to genes [18, 19]. Recent research indicates that repeats serve a 

number of evolutionary roles in the genome [20, 21]. Their computational discovery and 

analysis has become increasingly important in genomics today [14, 15, 22]. We apply our 

spatial data mining approach to the problem of finding novel fragmented repeat families.  

Our approach is particularly useful for newly sequenced genomes where little is known 

about the repeat families found in the organism. 

 

1.1 Background 

The computational problem we are addressing is the discovery of proximity 

relationships in a one-dimensional space—the genome.  Extensive related research has 

been conducted in other domains that mine one-dimensional data including intrusion 

detection in data streams to discover attack patterns [23-26] and in text mining to 

discover relationships among concepts [27-31]. 

In the remainder of this section, we address the rationale for applying our hybrid 

data mining technique for identification of repeat families in DNA. We follow with a 

brief overview of current computational repeat finding algorithms. Although the 

predominant focus in genomics has been on identification and characterization of 
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proteins and genes, recent results from the ENCODE project [32-34] show that a 

substantially larger part of the genome is active than previously thought and new types of 

features are being discovered all the time [20, 35].  One area that has been largely ignored 

and is now receiving increased attention is the discovery and characterization of repeat 

regions in the genome [14, 22]. Once overlooked as “junk DNA” [18], repetitive regions 

recently have been found to have important regulatory functions in eukaryotic genomes 

[20, 21, 36, 37]. Additionally, it has long been known that repetitive DNA can cause 

insertions, deletions, or rearrangements in DNA that can alter gene structure and 

regulation [21, 36, 37]. It has also been reported that the tremendous increase in repeat 

activity in populations under extreme environmental stress may be a means of rapidly 

increasing diversity in DNA through mutation [38-40]. 

Repetitive DNA in the genomes of living organisms consists of active repeats and 

highly diverged ancestral repeats. All repeats, as they exist in the genomes today, 

originated through the replication of a DNA sequence and movement of the copy to 

another site within the genome [14]. Over time periods ranging from thousands to 

millions of years, sequences have evolved, diverged and undergone multiple rounds of 

replication so that extant instances may ultimately bear little similarity to each other [14]. 

Moreover, repetitive DNA is typically subject to higher rates of mutation compared to 

genes [38, 41]. One goal of repeat finding is to identify groups of repeats that are derived 

from a common ancestor (repeat families). Each repeat in a repeat family is an element of 

that family. Analysis of sequenced genomes has shown that a majority of repetitive DNA 

is old and represents diverged elements of inactive repeat families [42, 43]. Identifying 
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these remnant elements of ancient repeat families is challenging because they are highly 

diverged and fragmented and may have limited similarity to each other [22]. Figure 1.2 

illustrates the types of variation that may occur among elements of a repeat family. 

 

 

Figure 1.2 

Illustration of types of diverged elements of a repeat family 

 

 

1.2 Current approaches for repeat identification 

 There are two major classes of repeat identification algorithms: signature-based 

and ab initio [14, 22, 44].  Signature-based systems identify repetitive sequences by 

comparing input against a database of known repeats or by identifying sequence features 

indicative of known repeats in input sequences [45, 46]. Although these algorithms are 

widely used for repeat detection and characterization, only a limited number of repeats 

can be identified with such techniques since repeat databases represent a minute 

proportion of all repeat families present in living organisms. Therefore ab initio 

prediction-based systems are becoming increasingly important [14, 15, 22, 44, 47]. 
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Ab initio algorithms identify repeat families without using any prior knowledge of 

existing repeats and thus can be used to find unknown and uncharacterized repeat 

families [44, 47]. Most ab initio algorithms use a two-step process for repeat 

identification [14, 44, 48]. In the first step, sequences that potentially contain the same 

repetitive sequence are identified and clustered using approaches such as k-mer mining, 

spaced seeds and periodicity-based detection. In the second step, a description of the 

repeat family and/or a consensus sequence is extracted from each cluster using various 

techniques such as secondary clustering, graph mining and string matching/extension.   A 

consensus sequence for a repeat region or repeat family is a common representation of all 

elements belonging to that repeat family. We have recently completed an extensive 

review and empirical evaluation of ab initio repeat finders [14, 15].  We found large 

differences in the performance of the algorithms and utility of the information produced 

by these tools.  We also report that repeat discovery tools available today are not effective 

for identification of ancient repeat regions. 

 

1.3 Motivation 

 Our knowledge discovery algorithm employs a combination of association rule 

mining and graph mining to identify proximity relationships in genomic data. As a proof 

of concept, we utilize our algorithm to identify diverged repeat families in DNA sequence 

data. 

Our empirical evaluation of repeat finders [15] and research by others [22] 

indicate that the repeat families discovered by ab initio tools are actually fragments of 
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larger diverged repeat families. We take advantage of the fact that, although elements of 

diverged repeats retain only weak similarity along their entire length with the original 

repeat, certain sections of elements belonging to the same family retain tend to be 

conserved. If we consider repeat family members that exist as residual fragments in the 

genome today, the spatial arrangement or order of these fragments is largely preserved. 

Previous research has addressed the problem of defragmenting known repeats [22, 49] . 

Defragmentation is a procedure to assemble or cluster the fragments of a sequence 

feature such as a repeat region. Although these approaches are somewhat effective for 

genomes of well-studied species such as human, they cannot be readily applied to most 

newly sequenced genomes where little is known about repeat families. Therefore, in the 

absence of a comprehensive repeat database, the discovery and characterization of repeat 

families is a necessary component for understanding of the organism’s genome. 

 

1.4 Spatial proximity mining in genomic sequence 

 We describe a data mining technique for discovering spatial proximity 

relationships among features in genomic sequence.  As a case study, we investigate the 

identification of novel repeat families. An overall view of our approach is shown in 

Figure 1.1. We apply association rule mining followed by graph mining to find 

relationships among partial but conserved portions of highly diverged repeat families. We 

build representations of hypothetical ancestral repeat families from the graph of spatial 

relationships that were identified by association rule mining. 
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First, we employ an ab initio repeat finder, RepeatScout [44], to extract initial 

descriptions of repeat families from a DNA string. We then record the start and end 

coordinates of all instances of each repeat family on the genome. The coordinates are 

mined to discover association rules representing spatial proximity relationships among 

elements of all repeat families in a single pass through the list of associations. Discovered 

association rules represent the spatial relationships Upstream (before) or Downstream 

(after). We use the association rule metric of confidence [16] coupled with Monte Carlo 

simulation [50, 51] to assess the significance of spatial relations that are discovered. 

All qualifying relationships are modeled into a directed graph with edge weights 

equal to confidence for the relationship and with related repeat families as vertices. 

Connected components are extracted from this digraph. Each connected component 

represents a set of repeat families found to co-occur consistently in the same spatial 

configuration. Each set of repeat families is deemed to represent a spatially conserved 

larger repeat region that can be analyzed for further characterization. 

 

1.5 Hypothesis 

 Hypothesis: A combination of association rule mining and graph mining can be 

used to discover new and interesting spatial patterns among features in genomic data. 

Specifically, we demonstrate the utility of our knowledge discovery approach for 

identifying novel and diverged repeat families in genomes. Our results are assessed and 

validated by biologists for contribution to repeat discovery in genomes. 
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1.6 Contributions 

1.  We describe a new algorithm that combines association rule mining with graph 

mining for discovery of spatial proximity relationships in genomes.  A Monte 

Carlo-based simulation method is used to evaluate confidence in the proximity 

association rules. We demonstrate application of our algorithm for effective 

extraction of models of diverged repeat families. 

2. Compared to other ab initio repeat discovery methods, our method is shown to 

discover highly diverged repeat families with only small conserved sections using 

no prior knowledge of the structure or sequence of the repeats.  Unlike other 

repeat defragmentation approaches, our method works at the repeat family level 

rather than defragmenting individual instances of repeats. Our algorithm can 

defragment ab initio repeats as well as previously known repeats while other 

defragmentation algorithms work only with known repeats. 

 



www.manaraa.com

    

 10   

CHAPTER 2 

 

LITERATURE REVIEW AND RELATED WORK 

 

 

Association rule mining in biological datasets has emerged as an important area of 

research in the last few years. We use locations of families of genome features as input to 

an algorithm that applies association rule mining and graph mining to find consistent 

spatial relations among genomic features. As a proof of concept, we apply this algorithm 

to identify spatial relationships among families of repetitive DNA identified by a 

computational repeat finder with the goal of defragmenting the repeat families. This 

chapter is organized as follows.  First we discuss basic concepts of association rule 

mining followed by a discussion of spatial association rule mining. We then present a 

brief overview of the applications of spatial data mining and graph mining in 

computational biology. Finally, we close the chapter with a review of algorithms used for 

computational repeat finding.  

 

2.1 Association rule mining 

Agrawal et al. first proposed association rule mining [16, 52] to discover rules 

describing the co-occurrence of items in transaction data. Let i = i1, i2,… is be a set of 

binary attributes representing items. Each transaction t, in this case, is a binary vector and 

represents a sales record that contains items that have been purchased in a single 
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transaction. Here, t[p] = 1 if item ip was purchased in this transaction, and t[p] = 0 

otherwise.  Each transaction is a tuple in a database. Let I be a set of some items in i 

called an itemset in association rule mining terminology. A transaction t satisfies I if for 

all items ip in I, t[p] = 1. The “classical” association rule problem is generation of 

association rules from transaction data that meet certain minimal thresholds. 

Subsequently, association rule mining has been applied in many different domains and to 

many different types of data including spatial data, temporal and time series data, the 

world-wide web, etc. [30, 53-56].  

An association rule is a probabilistic implication of the form X → Y, which states 

that if X is observed, then Y is likely to be observed. X is called the antecedent and Y is 

called the consequent. There are two commonly used measures of the “interestingness” of 

rules. For association rule X → Y, where X and Y are itemsets: 

 

|)(|

)(|

)(

),(
)|()(

XnsTransactio

YXnsTransactio

XP

YXP
XYPYXConfidence

I
===→               (2.1) 

||

)(|
),()(

nsTransactio

YXnsTransactio
YXPYXSupport

I
==→                                  (2.2) 

 

Confidence is the measure of the conditional probability of a rule and quantifies 

the proportion of items containing X that also contain Y. Support gives the fraction of 

records in the database that contain both X and Y.  In the context of a retail business [16], 

rules having high support and strong confidence are desirable. 
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Lift [57] is another popular measure of interestingness of association rules. It is 

also known as interest [58] or strength [59]. Lift is a combined measure of confidence 

and support. 

 

)(

)(
)(

YXSupport

YXConfidence
YXLift

→

→
=→                                                     (2.3) 

 

The problem of association rule mining can be divided into essentially two sub-

problems. 

• Generation of sets containing items having support higher than a minimum 

threshold. These sets are called large or frequent itemsets. 

• Computing association rules from the frequent itemsets with a minimum 

confidence constraint. 

In this section, we introduce some basic algorithms for association rule mining 

within the context of mining traditional transactional datasets and then summarize 

selected extensions to the basic algorithm. We provide an overview of spatial data mining 

research and applications of association rule mining for spatial data mining. Finally, we 

present a summary of applications of association rule mining to biological problems. 

 

2.1.1 Algorithms for association rule mining 

Agrawal et al. [16] proposed the AIS (Agrawal, Imielinski, Swami) algorithm in 

one of the seminal works in association rule mining research. This technique is limited to 

discovering rules with one item in the consequent. AIS makes multiple passes over the 
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database and adds items to large itemsets at every iteration. The first pass is used to 

determine items (itemsets of size 1) that are frequent in the database (i.e., that meet a 

specified support criterion). Subsequent passes construct itemsets with progressively 

more items that still meet the support criterion. The itemsets for which support is 

calculated during each pass are called candidate itemsets. A pruning and estimation 

mechanism is used to discard itemsets with low support. Major drawbacks of this 

approach include too many passes over the database and high memory usage and 

runtimes due to generation of candidate itemsets that are eventually discarded.  

The Apriori algorithm, again developed by Agrawal et al. [60], addressed many 

of the problems of the AIS algorithm and is one of the most widely used association rule 

mining algorithms. Apriori employs a new candidate itemset generation method and 

pruning technique. Apriori utilizes the property that all sub-itemsets of a frequent itemset 

must be frequent. Only large and frequent itemsets from the previous pass over the 

database are considered in subsequent passes. Consequently, the number of candidate 

itemsets to be retained for future passes through the database becomes progressively 

smaller. Apriori still has the disadvantage of scanning the entire database many times 

[60]. A number of algorithms have been derived from the basic Apriori algorithm. Most 

of these algorithms follow one of three approaches: reducing the total number of passes 

over the entire database [60, 61]; replacing the entire database with a subset based on the 

current frequent itemsets [61, 62]; and exploring different kinds of pruning techniques to 

reduce the number of candidate itemsets [63, 64].  
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The FP-Tree algorithm [65] by Han et al. [65] overcomes many of the bottlenecks 

of the Apriori algorithm by constructing an FP-Tree and generating frequent patterns 

from the FP-Tree [65-67].  Other extensions include multiple concept level association 

rule mining [68-70], multi dimensional association rule mining [71-74] and the use of 

additional constraints such as  knowledge based constraints [75, 76], data constraints 

[77], dimensional constraints [78], interestingness constraints or rule formation 

constraints [79, 80].  Association rules have also been utilized for classification problems 

where a set of high quality rules is selected for prediction [81, 82]. Zaki et al. [83] 

provide an excellent survey of parallel and distributed algorithms for association rule 

mining and classify algorithms based on load-balancing strategy, architecture and type of 

parallelism used. 

 

2.1.2 Association rule mining from spatial data 

Spatial data such as geographical information is extensively used for knowledge 

discovery [56]. Wide application of remote sensing technology, automated collection of 

climate data and the importance of geographic information systems (GIS) have all 

contributed to development of very large spatial databases [84] and new technologies for 

data mining and knowledge discovery [53]. 

Spatial relationships denote distance-based relationships (e.g., within, near, very 

near, adjacent, etc.) among entities. Spatial data mining integrates spatial relationships 

and properties of items participating in the relationship to derive interesting rules.  For 

example, in the spatial association rule Is_a(X,house)^Close_to(X,Beach)→ 
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Is_expensive(X), the location of the house and its price are combined with the proximity 

relationships Close_to.  

A substantial body of research exists in the area of spatial association rule mining 

of geographical data. Koperski et al. [53, 85] present research in mining geo-spatial 

databases using the Apriori algorithm. They use a top-down, progressive deepening 

approach that searches for frequent rules at a high concept level. A deeper search is then 

used for lower level concepts for frequent rules discovered in the previous step. The 

authors [86] also proposed a two step method to classify entities stored in GIS databases 

into spatial and non-spatial classes using decision trees. This work was then extended by 

Malerba et al. [54] to mine census data. Malerba et al. utilize the formalism of Datalog 

from the area of inductive logic programming (ILP) to represent spatial information and 

background knowledge required for analysis of spatial relations. Han et al. adapt their 

DBMiner relational data mining system [87] to develop GeoMiner [88] for discovering 

rules from a geo-spatial database. Han et al. also designed a spatial data mining language 

called Geo-Mining Query Language (GMQL), an extension to Spatial SQL [89], as a part 

of this work. 

A graph-based spatial relationship mining engine forms the core of a 

neighborhood discovery approach proposed by Ester et al. [90]. A neighborhood graph is 

built where a node represents an entity in the spatial database. An edge between two 

nodes denotes a spatial relation and short paths are used to discover sets of co-located 

entities that are likely to influence each other. 
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Rinzivillo et al.[91] put forward a general approach to extract spatial transaction 

data from GIS and mine for frequent spatial association rules. They have implemented 

the Apriori algorithm [60] as a case study. Knorr et al. [92] present an interesting 

technique to mine the aggregate proximity relationships between entities on a map. In 

their example, clusters are groups of houses, and the features are other structures on the 

map such as schools and parks represented as polygons. They identify the features that 

are located in proximity to clusters in two-dimensional space. Braunmuller et al. [93] 

introduce a parallel spatial data mining approach and demonstrate reductions in I/O cost 

as well as processing time.  

A genetic algorithm-based spatial association rule mining technique (ARMNGA) 

was proposed by Dai et al. [94] to mine databases of images. They demonstrate that 

ARMNGA outperforms the classical Apriori algorithm [60], especially in tests where a 

low support parameter is used. 

 

2.1.3 Association rule mining in biology 

The exponential increase in the number and size of biological datasets has made 

the application of knowledge discovery methods such as association rule mining an 

attractive proposition. 

Satou et al. [95] applied association rule mining to discover previously unknown 

correlations among sequence, structure and function in endopeptidase proteins [96]. The 

authors used data from public protein databases and their PACADE database system for 

the association rule mining analysis. 
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Microarray experiments are a common source of very large datasets in biology. 

These experiments are used to compare the expression or activity of genes in different 

tissues or under different conditions. One of the first applications of association rule 

mining to mine microarray datasets was performed by Becquet et al. [97]. The authors 

extracted association rules relating genes from human gene expression data using the 

Min-Ex algorithm [98] and the results were found to correspond to co-regulated genes 

reported in the literature. Georgii et al. [99] investigated and validated the utility of 

quantitative association rules based on half-spaces (linear combinations of variables with 

constant thresholds [100]) to identify co-regulated genes from microarray results. 

Quantitative association rules based on half-spaces can be defined as follows: “If the 

weighted sum of some variables is greater than a threshold, then, with high probability, a 

different weighted sum of variables is greater than a second threshold [100]”. The authors 

show that, compared to regular discrete interval-based association rules, these rules can 

better model desired biological inferences from the continuous numerical data produced 

by microarrays. Besson et al. [76] proposed D-miner, a algorithm to mine concepts under 

constraints, and applied it to analyze expression properties of genes from microarray data. 

A novel algorithm that predicts co-regulated sets of genes with a lower false positive rate 

than the Apriori algorithm was presented by Ji et al. [101].  

A promoter for a gene is a DNA sequence, usually located near the gene, that 

plays a role in governing expression of that gene. Huang et al. [102] mined promoter 

regions of genes sharing similar expression levels and extracted rules associating known 

sequence features related to gene expression (transcription factors) and repetitive 
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sequences in promoter regions. From the same research group, Horng et al. [103] 

published a study describing results of association rule mining in repetitive DNA from 

humans. They created a Repeat Sequence Database containing repetitive DNA from 

sequenced genomes. Rules were then extracted representing combinations of 

transcription factor binding sites in repetitive DNA present in the database and screened 

using a Chi-square test. Morgan et al. [104] also verified the effectiveness of association 

rule mining as a data mining technique to find biologically relevant pairs of transcription 

factor binding sites in DNA. They found that pairs of transcription factor binding sites 

identified by association rules to be co-located consistently were also co-cited in PubMed 

abstracts and that the predicted associations had been confirmed experimentally. 

Negative association rules have been utilized by Artamonova et al. [105, 106] to 

identify erroneous protein annotation in the publicly available PEDANT genome 

database [107]. A majority of the identified proteins have been characterized using 

unsupervised similarity based methods. This approach, due to propagation over time, has 

led to a high rate of errors in annotations produced by computational characterization. 

The authors mine for strong negative association rules denoting incorrectly characterized 

proteins in public repositories. 

CARSVM is a hybrid classification framework proposed by Kianmehr et al. [108] 

using association rule mining and support vector machines. They report an increase in 

classification accuracy of gene expression data when features selected through 

association rule mining are used as input for the learning process for the support vector 

machine. Another application of association rule mining for classification called 
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NETCAR was implemented by Tamura et al. [109] for mapping genotype to phenotype 

in microbes. Phenotype is defined as an observable characteristic of an organism such as 

a developmental stage or behavior. Genotype is the genetic composition of an organism. 

Tamura et al. mined pairwise and multiple-to-one associations from gene to phenotype 

and demonstrated the advantages of association of groups to genes to a phenotype over 

simple pairwise rules. 

 

2.2 Spatial data mining in biology 

Spatial data mining has also been applied to biological data. There is evidence of 

a higher organization of genes [110] in eukaryotes. Co-regulated genes have been 

reported to be located together and this makes spatial mining of the genes a desirable 

option. Horimoto et al. [111] performed a comparative analysis of gene locations in 19 

genomes and discovered statistically significant spatial correspondence of similar genes 

between related organisms.  

One of the major challenges in structural biology is to understand the mechanism 

of protein folding. Yang et al. [112] proposed a spatio-temporal approach to mine three-

dimensional (3D) structural data and summarize protein folding trajectories. They applied 

their technique to predict a consensus trajectory from multiple folding pathways. 

Rantanen et al. [113] have used the spatial locations of protein atoms to revise 24 pre-

defined protein atom classes. The authors model the atoms using a Gaussian mixture 

model and estimate parameters with the expectation-maximization (EM) algorithm. A 
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dissimilarity matrix is derived from the Gaussian mixture models and used to compare 

and reclassify the 24 classes. 

Researchers have also applied GIS spatial mining techniques and software to 

structural information from biology. A three-dimensional (3D) morphological database 

was mined to extract topographical attributes using GIS techniques [114]. The attributes 

were then used as features for classification of the three-dimensional phenotypes. Dolan 

et al. [115] designed an interactive genome browser called Genome Spatial Information 

System (GenoSIS) for the mouse genome that uses the ArcGIS commercial GIS software 

and, unlike other genome browsers, supports spatial queries. 

Hemert et al. [116] have applied association rule mining to derive two separate 

categories of association rules from a database containing spatio-temporal gene 

expression data from mouse including images showing gene expression patterns over 

time. They discovered regular association rules relating genes that are co-expressed and, 

in a novel application of spatial data mining, also extracted rules associating spatial 

regions where genes were co-expressed. 

 

2.3 Graph mining in biology 

The advent of high throughput biology methods has enabled scientists to discover 

different types of relational information about genes, proteins, gene-protein interaction, 

protein-protein interaction, transcription factors, phenotype and other properties of 

biological systems. Graphs have proven to be useful mechanisms for representing these 

relationships and graph mining algorithms are popular for extracting knowledge from the 
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graph structures [17, 117-119]. Aittokallio and Schwikowski [117] provide a highly  

useful review of graph based methods for analyzing networks in cell biology . Below we 

discuss a few representative examples from this large body of literature. 

Hu et al. [118] represented different microarray gene expression data sets as 

graphs and then mined for frequent subgraphs that occur in the graphs to find sets of 

genes that are commonly co-expressed. Their algorithm, CODENSE, discovers coherent 

subgraphs from a set of graphs and also extracts information about overlapping 

subgraphs, an area of interest in biology when a single gene is a part of multiple 

networks. Yan et al. [120] mined 105 human microarray datasets and to identify the 

frequent dense subgraphs, each representing a set of co-expressing genes or transcription 

modules.  

Predicting and understanding protein-protein interaction networks or protein 

complexes is another important area of research in functional genomics. A large body of 

work exists based on the principle that the interacting proteins can be found as cliques in 

interaction networks representing pairwise protein interaction data. King et al. [121] 

proposed a technique to partition a interaction graph into clusters using a cost-based local 

search algorithm for predicting sets of protein complexes. Some clustering with overlap 

approaches [122, 123] are also based on the fact that a number of proteins have been 

reported to participate in multiple complexes. Qi et al. [124] propose a graph mining 

approach targeting protein complexes that may not be represented by cliques but other 

structures such as a “star” in an interaction graph. The authors used a supervised 

clustering technique by learning properties from known complexes and show an 
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improved performance over clique-based approaches. Li et al. [125] put forward a 

modified version of the DPClus graph clustering algorithm [126] that uses topological 

characteristics of vertex distance and subgraph density to identify clusters with small 

diameter, a characteristic of protein complexes. The authors show that their algorithm, 

IPCA, when compared to other approaches, is able to identify most experimentally 

determined complexes with a low false positive rate. 

 RNAmine was proposed by Hamada et al. [127] to tackle the problem of 

identifying similar substrings from a set of RNA sequences. The authors use a directed 

labeled graph, called a stem graph, and constraint based graph mining to identify the stem 

pattern for an RNA family. The stem patterns can then be used for genome wide scans to 

identify members of the RNA family. 

 

2.4 Computational analysis of repeat regions in DNA 

Here we review the major algorithmic approaches currently employed for repeat 

identification in DNA.   There are two main categories of repeat finding tools—tools that 

rely on a database of known repeats and ab initio tools that do not rely on prior 

knowledge of repeat sequences. While we provide an overview of signature based 

methods, the bulk of the review is focused on ab inito algorithms because our spatial 

mining algorithm is an ab initio repeat finder. Ab initio tools are becoming increasingly 

important due to the tremendous growth in the amount and diversity of sequences being 

generated by genome sequencing projects.  For each ab initio tool we describe the 

sequence data utilized, the approach used for initial identification of repeats, and the 
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method used to extract descriptions of repeat families.  Sequence data can be a 

chromosomal length DNA sequences or sets of short DNA sequences. In the discussion 

below, repeat identification tools are introduced based upon the type of algorithm they 

use to identify and classify potential repeats. 

 

2.4.1 Database- and signature-based identification techniques 

Library-based systems identify repetitive sequences by comparing input sequence 

datasets against a database of known repeat sequences [45]. The predominant tool used in 

repeat identification, RepeatMasker [128], is database driven.  A string matching engine 

such as BLAST [129, 130], WU-BLAST (http://blast.wustl.edu/), or Crossmatch 

(www.phrap.org) is utilized for comparison of an input sequence to known repeat 

sequences. The singular disadvantage of library-based systems is their inability to detect 

or analyze novel repeat families.  

Signature-based repeat identification tools search the query sequence for certain 

short DNA strings that represent patterns that occur in known repeats. These tools may 

also search for spatial arrangements of DNA strings characteristic of a particular known 

repeat family.  Unlike database-dependent tools, all signature-based tools employ 

heuristics based on a priori information of particular known repeat families.  However, 

some signature-based tools also may use a database of repeats at some stage in the 

analysis process. 

LTR_STRUC [131], FINDMITE [132] and RetroTector [133] are examples of 

signature based tools that look for DNA patterns characteristic of certain types of known 
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repeat families. LTR_STRUC and FINDMITE search for presence of DNA strings 

arranged in a specific spatial layout. FINDMITE uses an adaptation of the Knuth-Morris-

Pratt string matching algorithm [134]. RetroTector also provides a graphical interface and 

various other utilities to investigate the detected elements. 

MAK [135] uses an input repeat family to seed a search for all similar repeat 

families and their elements. Inverted Repeats Finder [136] searches for palindromic DNA 

strings that are a hallmark of a number of known repeat families. The approach proposed 

by Andrieu et al., TE-HMM [137], involves building different hidden Markov models 

using training sets of repeats and gene sequences.  TE-HMM is then used to classify the 

query sequence or part of a query sequence into one of these categories based upon DNA 

composition of the sequence. TSDFinder [138] and SINEDR [139] use structural 

knowledge of known repeats to predict potential repeat regions. 

Signature-based tools use spatial mining heuristics derived from known classes of 

repeats. However, these tools are also limited to discovering novel repeat families that are 

similar to known repeat regions. Our data mining approach is applied to identify diverged 

and fragmented repeat regions in DNA that may otherwise not be identified by available 

repeat finders. There are some computational techniques available to recognize and 

defragment co-linear elements. Given a database of repeat families, Transposon Cluster 

Finder [49] can identify fragmented and/or nested elements of a family. LTR_MINER 

[140] is another tool that clusters elements of a repeat family when the fragments exist 

within a range expected from the size of the repeat family consensus sequence. TEnest 

[141] and REannotate [142] also defragment elements of repeat families and construct a 
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visualization of the nesting order among the repeat families. All these tools work with the 

Repbase library [45] or a database of known repeats to seed their search and the focus is 

on computing the chronological history of known repeats using defragmentation of  co-

linear elements and nesting order. 

 

2.4.2 Ab initio identification techniques 

Algorithms falling into this category identify repeat families and their elements 

without any prior knowledge of structure or organization of known repeat regions. The 

process of de novo identification enables these tools to discover previously unknown 

repeat families. These methods are therefore of critical importance when analyzing newly 

sequenced genomes about which little is known. Most of the tools produce a set of 

consensus sequences, each representing one repeat family, as the final output. We use one 

such tool, RepeatScout [44], for initial repeat identification in our data mining pipeline. 

For the sake of clarity and organization, we have divided all the algorithms into two 

stages.  The first stage deals with initial identification of elements of repeat families. The 

second stage, repeat family definition, is focused on identifying the boundaries of each 

element and extracting a consensus sequence for each family. We discuss major ab initio 

repeat finding algorithms/tools within the framework of these two stages. Note that some 

tools perform element identification without generating a consensus sequence for the 

repeat family. 
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2.4.2.1 Initial identification of elements 

All ab initio discovery of repeat families begins with identification of substrings 

that are present in numbers above a certain threshold in the input DNA sequence.  Four 

basic (but not entirely exclusive) groups of approaches have been utilized in initial 

identification of elements. 

Two of the most widely used exact string matching and sequence alignment 

algorithms are BLAST and WU-BLAST. All words from the query and reference dataset 

with length equal to or more than a user specified minimum threshold are compared and 

the match is extended at both ends as long as significant similarity is found. These tools 

are the string matching engine for many of the available tools. Repeat Pattern Toolkit 

[143] and RECON [144] use the BLAST module (www.ncbi.nlm.nih.gov/blast/) and 

WU-BLAST respectively. Both tools then use a graph-based single link clustering 

algorithm to group elements of a repeat family. Single link clustering regards two 

elements as belonging to the same family if they share a sequence identity longer than a 

certain proportion of either one of the two. PALS is a banded searching local alignment 

algorithm that is employed by PILER [145]. Banded searching is local alignment of only 

those strings that are located within a certain distance of each other. 

The rest of the repeat finding tools implement various exact string matching 

techniques to find elements of repeat families. These techniques are classified as k-mer 

approaches [14]. A k-mer or “word counting” approach views a repeat as a substring w of 

length k that occurs more than once in a sequence S of length n.  A repetitive subsequence 

w that cannot be extended without introducing mismatches is called a maximal repeat.   
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Since there are 4
k
 possible words of length k (DNA has a 4-letter alphabet), these 

approaches usually require that k be at least log4 (n) where n is the length of the sequence 

[44, 47],47,[146]. The value of k required for indexing assembled plant genomes is 

roughly 12 to 19 based on reported eukaryotic genome size estimates. 

REPuter [147] was one of the first tools to implement a k-mer search algorithm 

for repeat finding.  Its search engine component, REPfind, uses a suffix tree data 

structure developed by Weiner [148] for storing all repeated exact k-mers or string that 

have lengths greater than or equal to a user-specified size.  Suffix trees can be used to 

search for strings in linear space and time with a complexity of O(n + z) where z is the 

number of maximal repeats. The REPuter k-mer approach has also been effectively used 

by other tools.  For example, RepeatFinder [149] and RepeatGluer [48] both use the 

REPuter engine to generate an initial list of maximal repeats. ReAS [47] and RepeatScout 

[44], the latter being a part of our data mining pipeline, use a similar approach where only 

fixed length k-mers are used to seed the search. The ReAS algorithm employs a randomly 

selected, high frequency k-mer as “bait” to retrieve strings of length 100 bp centered on 

the k-mer. RepeatScout also builds a library of high frequency fixed length k-mers and 

uses these as seeds for an efficient greedy search during the family definition stage. 

RepeatScout implements a modified version of the classical local alignment algorithm by 

incorporating a penalty-based scoring system for screening the k-mers [44]. 

Instead of searching for only exactly identical strings of length k, spaced seed 

algorithms search for strings allowing for a predefined number of mismatches. The first 

spaced seed tool, PatternHunter [150], allowed mismatches in fixed positions only. 



www.manaraa.com

    

 28   

Multiple spaced seed techniques [150-152] extend this idea by using several optimal 

spaced seed patterns in searches. “Indel seeds” proposed by Mak et al. [153] use a spaced 

seed strategy more suited to weakly conserved regions in DNA such as repeats. The 

mismatch positions in the string can tolerate not only single base mismatches but also 

insertions and deletions of short DNA strings [136]. “Indel seeds” potentially offer higher 

sensitivity as compared to exactly identical seeds and are of considerable utility when 

evaluating repeat regions where insertions and deletions are more likely to be present. 

Repeat Analysis Program [146] employs a hybrid string matching approach by 

creating an index of spaced seeds according to its location on the genome. Word counters 

are created for each position in the sequence, and all potential words of size k beginning 

from each sequence position are enumerated using a multi-array data structure.  

One of the earliest and simplest repeat finding techniques was based on the Dot 

matrix. The dot-plot [154] tool plotted a input DNA sequence against itself.  Auto Dot 

PLOT or Adplot [155] is an adaptation of the dot-plot principle wherein similar k-mer 

elements located within a user-specified range are detected in the first step. A sliding 

window based filtering is applied to screen out repeat families whose sum of element 

lengths is below a threshold. The focus of this class of tools is visualization of the 

distribution of repetitive regions over the sequence. 

Periodicity-based approaches are fundamentally different from the 

aforementioned techniques. The Spectral Repeat Finder from Sharma et al. [156] uses 

Fourier transforms to analyze DNA sequence in the frequency domain rather than the 

commonly used time domain. The power spectrum of DNA sequence generated from the 
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Fourier transforms is used to identify both short term and long term autocorrelations of 

the sequence with itself.  High intensity peaks in the power spectrum of the sequence 

represent candidate repeat elements. These candidate repeats are used to seed a local 

alignment search to detect similar elements and to determine the consensus sequence for 

the family. The time complexity of the algorithm is O(n
2
). 

 

2.4.2.2 Defining repeat families 

The methods described in the preceding section are used by computational repeat 

finders to identify sets of similar elements whereas the following section discusses 

techniques used to extend and combine elements into repeat families, where possible, and 

to extract descriptions of the consensus sequence for each repeat family. 

Some tools implement repeat family identification by further clustering to derive 

the final family definition.  This process may be guided by biological heuristics. 

RepeatFinder [149] begins with the initial set of exact repeats identified using one of two 

suffix tree approaches (see stage 1) and then merges different exact repeat elements that 

are close together (merging using gaps) or that overlap (merging using overlap) to 

generate a set of “merged repeats.” Multiple rounds of clustering follow and a single 

repeat element is selected from each cluster as the representative. Unlike other repeat 

finding tools, RepeatFinder does not construct a consensus sequence. PILER clusters 

similar repeat elements identified by PALS into “piles”. The characteristics of elements 

clustered in a pile are matched against profiles of four types of known repeats.  The 
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MUSCLE [157] alignment program is then used to generate the consensus sequence for 

each family detected.  

Another technique used for family definition is graph mining. Repeat Pattern 

Toolkit [143] builds a repeat graph G = (V,E) using only exact matches from the 

clustering step.  Vertices V represent the repetitive sequences or elements. Weighted 

edges E represent the relationship among similar elements. Connected components from 

the graph are converted into minimum spanning trees using Kruskal’s algorithm and 

Binsort [134] in O(|E| + |V|log|V|) time. Each minimum spanning tree represents a repeat 

family. Each tree is reduced to a single vertex to deduce the consensus sequence for the 

family. This vertex is the weighted midpoint of all the other vertices in the graph. A 

major limitation of this technique is its inability to address repeat families that have 

elements with insertions and deletions since only exact alignments are analyzed. 

Bao and Eddy [144] extended and improved upon the work of Agarwal and States 

[143] with RECON.  The algorithm refines the elements derived from the results of local 

alignment.  This is required since RECON works with multiple DNA sequences instead 

of a single long DNA sequence. The final set of elements is represented as a repeat graph 

H where each element is a vertex and edges represent relationships among elements. 

Elements with an overlap ratio above a specified threshold are deemed to belong to the 

same repeat family while those with significant alignment but with overlap ratio below 

the threshold are considered to belong to different families. RECON only reports the 

elements for each repeat family. 
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Repeat elements are known to frequently contain smaller repetitive subsequences 

within them. RepeatGluer [48] models the complex structure of nested repeats into a 

weighted digraph using A-Bruijn graphs, an extension of the de Bruijn graphs [158]. The 

original de Bruijn graph can model only perfect repeats. The concept has been 

generalized by Pevzner et al. [48] to A-Bruijn graphs to enable approximate matches or 

imperfect repeats to be represented. The algorithm constructs an adjacency matrix that is 

used to construct a weighted A-Bruijn graph G where the weight of the edge between two 

vertices is the number of edges joining them. A number of biologically derived heuristics 

are used to simplify the graph. Finally, each set of connected components or “tangle” is 

resolved to a consensus sequence. 

The most widely used method for family definition is string extension. 

Algorithms covered in stage 1 that cluster high frequency k-mers as a first step often 

employ string extension techniques for the second step of family definition. REPuter was 

one of the first repeat finders to use the string extension method [147]. The output of its 

suffix tree based search engine is processed further for finding degenerate repeats using 

either a Hamming distance model or an edit distance model [159]. The edit (or 

Levenshtein) distance approach has an overall time efficiency of O(n+zk
3
) where n is the 

size of the sequence and z is the number of k-mers extended. Of note, the REPuter 

package has been subsumed by Vmatch [160].  Vmatch uses suffix arrays [161] that have 

a reduced space requirement compared to suffix trees for indexing substrings.  

RepeatScout [44] generates consensus sequences by first detecting a set of highly 

repetitive fixed length k-mers as described in stage 1.  The algorithm extracts all 
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instances of each k-mer repeat element with its surrounding region and then greedily 

extends the boundaries on both ends yielding a consensus sequence for the repeat family 

representing the k-mer.   

The set of 100 bp sequences selected by ReAS [47] for each k-mer are processed 

by ClustalW [162] to generate an initial 100 bp consensus sequence centered on the k-

mer.  If another k-mer exists near either end of the initial consensus sequence, it is used to 

capture additional sequences from the input dataset.  The newly retrieved sequences are 

then utilized to extend the initial consensus sequence up to five times. 
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CHAPTER 3 

 

SPATIAL ASSOCIATION RULE MINING 

 

 

We have developed a data mining algorithm utilizing concepts from association 

rule mining followed by graph mining to mine for spatial proximity relationships in one-

dimensional data.  

Hypothesis: A combination of association rule mining and graph mining can be 

used to discover new and interesting spatial patterns among features in one-dimensional 

space genomic data. Specifically, we demonstrate the utility of our knowledge discovery 

approach for identifying novel and diverged repeat families in genomes. Our results are 

assessed and validated by biologists for contribution to repeat discovery in genomes. 

Concepts from association rule mining have been adapted to mine and quantify 

directed spatial proximity relationships on genomic sequence. These spatial proximity 

relationships are modeled into a directed and weighted graph. The connected components 

within this graph represent the features that co-occur on the genome.  

In this chapter, we first describe our general approach for discovery of spatial 

proximity relationships in genomic data. Figure 3.1 illustrates how we apply spatial 

association rule mining to genomic sequence. We then describe the types of spatial 

relationships our algorithm identifies, the association rule metrics used to assess the 

interestingness of the discovered rules, and the subsequent use of graph mining to 
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identify frequently co-occurring patterns. In order to demonstrate the utility of our spatial 

data mining approach, we describe its application to the problem of ab initio repeat 

finding in the next chapter. 

 

 

Figure 3.1 

Process flow of the spatial association rule mining algorithm 
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3.1 Spatial association rule mining  

Association rules have been widely used for knowledge discovery in a variety of 

data types to discover co-occurring entities [16, 60]. The concept lends itself well to 

extracting and quantifying spatial proximity relationships from one-dimensional data like 

a genome.   

Unlike classical association rule mining applications that mine for simple co-

occurrence type relationships, we are interested in extracting directed spatial proximity 

relationships. We identify directed spatial proximity relationships based on co-occurrence 

of features within a range or distance measure. We then apply the confidence metric from 

association rule mining theory to calculate the strength of the identified spatial proximity 

association rules among features. 

 

3.1.1 Spatial relationships  

Here, we define the spatial proximity relationships that are the object of our 

mining algorithm. The genomic sequence, for the purposes of our algorithm, is a long 

string of characters.  For simplicity, we define the process in terms of a single 

chromosome instead of the whole genome. However, the following definitions can be 

applied a whole genome without modification. Let the entire chromosome be C = 

x1,x2,…,xn where n is the length of the chromosome and xi represents the nucleotide at 

position i on the chromosome from the alphabet S = {A,T,G,C,N} where A, T, G and C 

are one of the four nucleotides that make up DNA and N represents an unknown 

nucleotide. Genomic features are often classified into families.  Our overall goal is to 
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discover frequently occurring spatial relationships among families. Let F be the set of 

feature families under consideration (for example, repeat families or gene families). For 

each family Fi, the set of all instances of Fi on the genome is Ei. Figure 3.2 shows the 

layout of instances of families F1, F2 and F3 where E1={elem11, elem12, elem13}, 

E2={elem21, elem22} and E3={elem31}. We call each instance an element. 

 

 

Figure 3.2 

Illustration of instances of families F1, F2 and F3 

 

F = {F1,F2,…,Fm} where m is the total number of families. Each family represents 

a hypothetical ancestral sequence that can be denote by a graph, grammar 

or consensus sequence.  

E = {E1, …. Em} where Ej is the set of all elements of family Fj and m is total 

number of families. Each set Ej consists of all instances of family Fj. 

Ej= {elemj1, elemj2,…., elemjp} where j is the family and p is the number of 

instances of Fj on the chromosome C. 

The location of each element on the chromosome is designated by specifying the 

starting and ending positions in the genomic sequence:  elemjk(s,e) where s is the starting 

position on chromosome C and e is the ending position.  Although genomic sequence is 

typically given as a single sequence of characters, this sequence actually represents the 

two complementary strands of DNA with opposite orientation as shown in Figure 3.3. 
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The sequence of one strand completely specifies the sequence of the other strand by 

complementary base pairing (A pairs with T and C pairs with G). Each strand of the 

DNA also has a direction. Genomic features can occur on either strand. By convention, 

the sequence that is given is called the “positive” strand. The implied complementary 

strand has the opposite orientation and is called the “negative” strand.  Each position on 

the chromosome C is numbered according to the positive strand, i.e., in left to right 

orientation. If the element is on the negative strand, the starting position will be greater 

than the ending position.  The length L of elemjk(s,e) = (s-e)+1 for elements on the 

negative strand while the length of elements on the positive strand is (e-s)+1. This 

orientation property affects our directed spatial proximity relationships since the strand of 

the element will determine how spatial relations are calculated. 

 

 

Figure 3.3 

Double stranded nature of DNA 

 

If the starting and ending positions of an element are not specified, we denote the 

strand using a superscript as shown in Figure 3.4. The strand of an element must be taken 

into account by the data mining algorithm for identifying directed spatial proximity 

relationships.  
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Figure 3.4 

Illustration of elements from two families on different DNA strands 

 

We mine for spatial relationships among the elements of families on the 

chromosome. If we are considering two instances elemxk and elemyl of families Fx and Fy 

then the spatial relationship discovery process will identify Upstream/Downstream, 

Overlap, and Within relations as illustrated in Figure 3.5 and Figure 3.6 and explained 

below.  Let the maximum distance for a spatial relationship be a user-supplied parameter 

dmax. The definitions for these relations are stated in terms of the positive strand. The 

definitions for the negative strand follow in a straightforward way. We consider 

relationships among all elements irrespective of their family, and therefore, we can 

discover both intra-family and inter-family relationships. 

 

 

Figure 3.5 

Depiction of Upstream and Downstream spatial relationships 
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An Upstream (U) relationship occurs between two elements if the end of the first 

element is prior to the start of the second element and the distance from the end of the 

first to start of second is within the range [1..dmax]. More formally, an instance 

elemxk(s1,e1) is related to instance elemyl(s2,e2) by relation U  if e1 < s2 and (s2 – e1+1) is in 

the interval [1..dmax]. The length of this interval is the distance between the two elements 

and will be positive. Downstream relationships (D) can also be defined similarly, but it is 

not necessary to consider both Upstream and Downstream because the first implies the 

second. Figure 3.5 shows an instance of Family 1 U Family 2 spatial relationship. 

 

 

Figure 3.6 

Depiction of within and overlap special case spatial relationships 

 

We resolve cases of overlap of two elements and cases where one element exists 

entirely within another to special cases of Upstream relationships as shown in Figure 3.6. 

In the case where one element is entirely within another element, the spatial relationship 

is Upstream if s2 ≥ s1 and e2 ≤ e1. The distance between the two elements is defined as for 

Upstream above, but in this case, the value is negative.   Similarly overlapping elements 
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are defined as Upstream if s2>s1 and s2<=e1 and e2>e1. The distance between the two 

elements is defined as for Upstream and is again negative. Figure 3.6 shows special cases 

of Overlap and Within spatial relationships that are converted into Upstream and 

Downstream spatial relationships. The Within relationship is represented as an Upstream 

relationship (Family 4 U Family 3). The Overlap relationship is represented as Upstream 

relationship (Family 5 U Family 6). 

 

3.1.2 Directed spatial association rule mining algorithm 

We provide an overview of the directed spatial association rule mining procedure 

in this section. This algorithm is initialized with the coordinates of elements for all 

families and a distance parameter dmax. Neighboring elements within a range dmax are 

detected for each element and the appropriate Upstream or Downstream relationship is 

recorded in a hash table (Figure 3.7). In order to prevent redundancy while counting 

occurrences of a relationship between two families, we allow each element to have only 

one relationship with any other element of a particular family.  
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Figure 3.7 

Algorithm for association rule mining to discover spatial relationships on the genome 
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3.1.3 Spatial association rule metrics 

We use the confidence metric for computing “interestingness” of the spatial 

association rules we discover using our algorithm. The number of occurrences that relate 

elements of two feature families by a certain relationship must be viewed in light of the 

number of elements of both families present in the genome. We calculate the confidence 

of a rule with respect to the participating families as follows 

 

( )FF

FF

yx

yx

Min
Confidence

,

σ
=

 

 

where σ is a spatial relation such as Upstream, | Fx σ Fy | is the number of times this 

relationship is observed among elements of families Fx and Fy. |Fx| and |Fy| is the number 

of elements of the respective family on the genome. 

The support metric is typically applied to transactional data where items present 

in large number of transactions are of greater interest from a financial point of view. 

However, the focus of our algorithm is to discover spatial association rules that occur 

more frequently than would be expected by chance. For example, in the domain of repeat 

finding, repeats that occur very frequently in the genome have been studied for many 

years and the most “interesting” new relationships that remain to be discovered may be 

among repeats that do not occur in large numbers in the genome [15].  Therefore, we do 

not use a support metric. 

(3.1) 
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3.1.4 Monte Carlo analysis 

Any methodology such as ours that involves making inferences from distribution 

profiles is subject to influence by counts of items. There is a possibility of discovering 

relationships that are a result of random association due to very high number of elements 

in a family. In order to avoid this problem, we derive a false discovery rate (FDR) for 

spatial relationships [163] using Monte Carlo simulation. 

 

 

Figure 3.8 

Algorithm to construct simulated chromosomal locations and compute false discovery 

rate for spatial relationships 
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For each simulated chromosome (SimChr), we use a uniform distribution to select 

a random starting location of each element and retain the same length as the original 

element (See Figure 3.8). Note that the SimChr has no sequence—we are only dealing 

with location data.  Spatial relationships discovered with randomly located elements are 

used to estimate the number of false positive identifications. The FDR is estimated as 

follows: 

 

FDR = # false positives /# positives                                         (3.1) 

 

where the # false positives is the number of spatial relationships discovered from the 

random locations and # positives is the number discovered with true locations.  The FDR 

is estimated with varying confidence thresholds and the confidence threshold that gives 

the desired FDR is selected. The FDR provides a confidence threshold used by the 

overall data mining process. We have estimated the FDR from a single simulated 

chromosome and as an average of the value obtained with multiple simulated 

chromosomes and find little difference in the results. We conclude that a single simulated 

chromosome is sufficient for estimating the FDR. However, because the number of 

elements per family varies widely, we also compute the statistical significance of each 

discovered relationship using the Chi square (χ
2
) statistical measure. We use an example 

to describe how Chi square (χ
2
) has been applied to our spatial association rule mining 

algorithm. 
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Suppose we are considering two families F1 and F2 with 15 and 19 elements 

respectively where ten elements of F1 are spatially related to ten elements of F2 according 

to Upstream/Downstream relationships defined previously. We want to determine if the 

locations of elements of F1 and F2 are independent. Our null hypothesis states that the 

locations of all elements are independent. We then map the relationship details into a 2x2 

contingency table for the observed frequencies as shown in Table 3.1. 

 

Table 3.1 

Example contingency table for observed values 

Observed F1 F2  

Within range R 10 10 20 

!( Within range R) 5 9 14 

 15 19 34 

 

 

We compute the expected frequencies from the simulated chromosomal locations 

used for estimating the false discovery rate (Figure 3.8). Using this approach with the 

values above, we find an average of 3 pairs of elements of F1 and F2 exist within the 

distance range dmax. We map this information into a 2x2 contingency table (Table 3.2).  
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Table 3.2 

Example contingency table for expected values 

Expected F1 F2  

Within range R 3 3 6 

!( Within range R) 12 16 28 

 15 19 34 

 

 

 

The Chi-square value is calculated using the formula 

χ
2
 = Σ [(Observed frequency – Expected frequency)

2
 / Expected frequency] 

Therefore the χ
2
 for the above contingency table is  

χ
2
 = (10-3)

2
/3 + (10-3)

2
/3 + (5-12)

2
/12 + (9-16)

2
/16 = 39.81 

 

The degree of freedom for a 2x2 contingency table is 1. The critical value for 1 df 

is 3.84 for a significance level (α) of 0.05. Hence our obtained value for χ
2
 of 39.81 

refutes the null hypothesis that the locations of elements of F1 and F2 are independent. 

The observed relationship between F1 and F2 is statistically significant at the p=0.05 

level. 
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Figure 3.9 

Example of a directed graph created from qualifying spatial relationships. 

 

3.2 Graph mining 

All relationships with confidence above the confidence threshold derived using 

the false discovery rate and that are statistically significant at a specified p value based on 

the Chi square test are modeled as a directed graph (See Figure 3.9). Each vertex in the 

graph represents a family. The weight of an edge is the confidence of the relationship 

between families or vertices the edge connects. The direction of the edge denotes 

orientation of the relationship. For a relation F1 U F20, we have edge F1→F20 and edge 

F1←F20 for the reciprocal Downstream relationship. In order to discover the set of 

families that share spatial proximity relationships, we extract all connected components 

from the graph. Figure 3.9 shows a directed graph with two connected components. 

In this work, we are reporting connected components as groups of repeat families 

that we find to be co-located consistently in terms of pairwise spatial relationships. 

Therefore we are assuming that all families of elements reported in a connected 

component are related transitively. A more typical approach in association rule mining is 

to identify sets of items (often more than two) that co-occur. We have not taken this 
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approach because we want to identify related families of elements where there may be 

substantial diversity that has evolved over time. For example, in the case of repeats, it is 

not unusual for sections to be missing in a substantial number of the elements of a repeat 

family. Mining of relationships among pairs and then inferring further relationships based 

on transitivity within the graph will enable us to discover such relationships. This 

approach may cause some features to be incorrectly grouped, but these cases can be 

identified during the analysis of results. By not constraining a family in a connected 

component to have spatial relationships with every other family in the connected 

component, we can identify weakly conserved patterns among the families. 
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CHAPTER 4 

 

EXPERIMENTS AND RESULTS 

 

 

We have implemented the directed spatial association rule mining algorithm 

described in Chapter 3 in a tool called ProxMiner and applied it to the problem of ab 

initio identification of repeat regions in the rice genome. This chapter first outlines the 

experiments designed to test the effectiveness of ProxMiner for discovery of repeat 

families in the rice genome. We then describe the results for two test datasets — one 

consisting of only rice Chromosome 12 and the other consisting of the entire rice 

genome. We explore examples of new repeat families discovered by our tool and we 

compare the capabilities of ProxMiner to other algorithms addressing similar problems. 

 

4.1 Problem definition 

 

 

Figure 4.1 

An illustration of a single diverged repeat composed of three fragments identified as 

separate ab initio repeat families (F1, F2 and F3). 
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We have applied ProxMiner to the problem of ab initio identification of diverged 

repetitive regions in the genome to demonstrate the effectiveness of our hybrid spatial 

mining approach. 

A DNA sequence is the one-dimensional substrate for these experiments. We will 

refer to all instances or elements of a repetitive sequence in DNA as a repeat family. The 

discovery of repeat families in newly sequenced genomes remains a challenging research 

problem despite the availability of a variety of computational repeat finders [44, 47, 48, 

147]. Computational techniques are adept at recognizing elements where the sequence is 

identical or highly similar among all elements for a repeat family but are ineffective in 

capturing diverged elements. This is commonly the case with repeat regions [14, 15, 22]. 

Figure 4.1 shows a diverged repeat region for which three sub-sequences are recognized 

by an ab initio repeat finder as three separate repeat families instead of three pieces 

belonging to the same repeat element. The problem of determining how to reconstruct the 

longer repeat family from the small subsequences typically identified by computational 

repeat finders is called repeat defragmentation [49]. Our algorithm utilizes frequent 

spatial relationships among pairs of repeat families discovered by an ab initio repeat 

finder to mine for larger diverged repeat regions. The fact that we are mining the graphs 

for groups of transitively related ab initio repeat families makes our approach sensitive to 

weakly conserved repeat regions in the genome. In computer science terms, we can think 

of each repeat family as a class and the elements of this repeat found in the genome as 

instances of the class. Our algorithm finds frequently occurring relationships between 

instances of the classes and uses these relationships to construct a graph where connected 
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components represent defragmented repeat families. In this case study, we used our 

ProxMiner algorithm to group repeat families identified by an ab initio repeat finder (i.e., 

RepeatScout [44]) and to discover fragmented repeat families where multiple repeat 

families reported by an ab initio repeat finder actually belong to a single large repeat 

family. For clarity, we will refer to the families identified by RepeatScout as RepeatScout 

families, and the longer families discovered by ProxMiner as ProxMiner families. 

 

4.2 Experimental design and methods 

We have used chromosomal DNA sequences from the japonica sub species of 

rice (Oryza sativa) to test our algorithm. Chromosome 12 from the rice genome [164] 

was used as an initial test dataset and the algorithm was subsequently tested with the 

complete rice genome (12 chromosomes). Chromosome 12 was selected for initial 

analysis because it has the highest percentage of repetitive DNA of rice chromosomes 

[43]. Genomic sequence was obtained from The Institute of Genomic Research website 

[164]. 
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Figure 4.2 

ProxMiner pipeline for repeat identification 

 

The ProxMiner pipeline utilizes the ab initio computational repeat finder, 

RepeatScout [44] and a string matching engine, RepeatMasker [128] (Figure 4.2). The 

repeat families derived by RepeatScout from the DNA sequence are used as input in the 

spatial data mining process. Each repeat family found by RepeatScout is represented by a 
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consensus sequence. We have conducted an empirical evaluation of ab initio repeat 

finders and have shown that these RepeatScout “repeat families” are often small 

fragments of larger repeat regions [15]. 

 

 

Figure 4.3 

A snapshot from the rice gbrowse genome browser showing elements of RepeatScout 

repeat families (in blue) 

 

ProxMiner uses the RepeatMasker tool to locate the coordinates of all elements 

for each RepeatScout repeat family (Figure 4.3) on the DNA sequence. These coordinates 

are used as input for the spatial association rule miner that identifies upstream and 

downstream spatial relationships between RepeatScout families. A Monte Carlo 

procedure is then used to identify the confidence threshold that will give a specified false 

discovery rate (FDR). The significance of each spatial relationship meeting the 
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confidence cutoff is further evaluated using the Chi square test. The spatial relationships 

with a confidence value sufficiently large to yield the specified FDR and significance 

level are then used to construct a directed weighted graph where vertices represent 

RepeatScout repeat families and the weights of edges represent the confidence of the 

association between the families. The connected components from this graph are 

extracted to provide sets of spatially related repeat families. Each set of related 

RepeatScout families is classified as a ProxMiner repeat family and represents a larger, 

diverged and fragmented repeat family. 

 

4.2.1 Rice chromosomal DNA datasets 

We report results of applying ProxMiner to Chromosome 12 and to the entire rice 

genome. Rice (Oryza sativa) is the most important food crop in the world with twelve 

chromosomes and a genome size of 389 Mb. The complete genome sequence for Oryza 

sativa (subspecies japonica cultivar Nipponbare) was reported in 2005 [43]. Rice is a 

model plant for the cereal species and also has a high repetitive content at 35% of the 

genome. Chromosome 12 has a length of 27.5 Mb and the highest repeat fraction at 

38.3% [43]. 

 

4.2.2 Implementation 

All experiments were performed on computers running Linux. The experiments 

for analyzing rice chromosome 12 were performed on a computer with dual 3.2 Ghz 

Xeon processors and 4 GB of memory while the experiments for rice whole genome were 
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performed on a computer with four quad core 2.66 Ghz processors and 16 GB of 

memory. ProxMiner is implemented in Perl and utilizes the Graph module developed by 

Jarkko Hietaniemi [165] for graph mining procedures.  

The various tools we utilize in our pipeline and for analysis of ProxMiner repeat 

families are listed below along with the parameters used: 

• RepeatScout [44]: This k-mer based tool is used as the ab initio repeat finder 

for initial identification of repeat families. The k-mer lengths used for rice 

chromosome 12 and the whole genome were 13 and 16 respectively. They 

were calculated according to the formula log4(g) [44] where g is the length of 

the genome. The k-mer frequency threshold was 3 and the threshold for 

minimum number of elements in a repeat family was 10. All parameters were 

selected based on the recommendations of Price et al. [44]. 

• RepeatMasker [128]: We use RepeatMasker for identifying elements of all 

RepeatScout repeat families. The parameters used were search type as 

“sensitive” and species name as “Oryza sativa”. We use the –gccalc option to 

force RepeatMasker to compute the percentage of G’s and C’s in the input 

sequence in order to select the most appropriate scoring matrix for scoring 

alignments. 

• ClustalW [162]: We use ClustalW with default parameters for all multiple 

sequence alignment (MSA) experiments. 

• Jalview [166]: Multiple sequence alignments were visualized and analyzed 

with the Jalview alignment editor.  
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We annotate known repeats in a sequence using RepeatMasker with the Repbase 

[45] library of known repeats. When used with Repbase, RepeatMasker produces an 

output that lists the types and numbers of known repeats found. 

 

4.3 Experimental Results 

The first step in our pipeline (See Figure 4.2) applies the ab initio repeat finder, 

RepeatScout. We set the parameter for the minimum number of occurrences of a family 

to ten as recommended by Price et al. [44]. Table 4.1 shows that RepeatScout identifies 

653 families in chromosome 12 and 6554 families in the entire genome.  

  

Table 4.1 

Summary of RepeatScout families for the two rice datasets 

 Number of 

RepeatScout 

families 

Average 

consensus 

sequence length 

(bp) 

Number of 

elements of all 

RepeatScout 

families 

Average 

length of 

elements for 

all 

RepeatScout 

families (bp) 

Chromosome 

12 

653 865 31,536 409 

Whole 

genome 

6,554 717 593,946 302 

 

 

RepeatMasker [128] was used to identify the locations of elements of the 

RepeatScout families on the respective datasets. We then applied our spatial data mining 

algorithm to identify the families whose elements are found to co-occur in significant 

numbers. We identified 107,244 spatial relationships among the 653 RepeatScout 
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families on chromosome 12 and 3,407,936 spatial relationships among the 6,554 

RepeatScout families for the entire genome.  

 

Table 4.2 

FDR values for rice chromosome 12 and whole genome derived using the algorithm 

described in Figure 3.8 

 

Chromosome 12 Whole genome 

Confidence 

threshold 
Number of 

relationships 

found on Chr 

Number of 

relationships 

found on 

SimChr 

FDR 

Number of 

relationships 

found on 

Chr 

Number of 

relationships 

found on 

SimChr 

FDR 

0.05 57520 74255 129.09% 801767 912773 113.85% 

0.1 16124 20503 127.16% 155343 152972 98.47% 

0.15 5647 6301 111.58% 41835 26547 63.46% 

0.2 2884 2394 83.01% 21180 8390 39.61% 

0.25 1656 782 47.22% 12494 2118 16.95% 

0.3 1197 288 24.06% 8950 686 7.66% 

0.35 915 88 9.62% 6719 140 2.08% 

0.4 757 41 5.42% 5567 60 1.08% 

0.45 628 9 1.43% 4487 10 0.22% 

0.5 550 4 0.73% 3919 6 0.15% 

0.55 457 0 0.00% 3103 3 0.10% 

0.6 398 0 0.00% 2694 3 0.11% 

0.65 305 0 0.00% 2124 0 0.00% 

0.7 261 0 0.00% 1794 0 0.00% 

0.75 206 0 0.00% 1456 0 0.00% 

0.8 159 0 0.00% 1156 0 0.00% 

0.85 121 0 0.00% 817 0 0.00% 

0.9 81 0 0.00% 655 0 0.00% 

0.95 36 0 0.00% 342 0 0.00% 

1 28 0 0.00% 282 0 0.00% 

 

 

As described in Chapter 3, we used Monte Carlo simulation to compute false 

discovery rates (FDR) at varying confidence thresholds. The FDR is the ratio of the 

number of associations discovered from the simulated dataset to the number of rules 
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found from the actual rice dataset (See Table 4.2). The results in Table 4.2 for both the 

chromosome 12 and whole genome show similar behavior although the FDR for the 

entire genome approaches zero at a lower confidence threshold. As the amount of 

sequence considered increases, the likelihood of random associations decreases. Both 

datasets show an unexpected behavior for very low threshold values. At low confidence 

threshold values, the number of spatial relationships identified in the randomly placed 

repeats is higher than for the real locations. We speculate that this is caused by the 

uniform distribution of elements on the simulated dataset as compared to the 

concentration of elements in some repeat rich regions in the actual dataset. The uniform 

distribution of elements on the simulated set results in a higher number of random spatial 

relationships when the confidence threshold is low. As the confidence threshold is raised, 

these relationships rapidly disappear while a substantial number of those in the actual 

data remain. 

We set our target FDR to 1% and thus selected a confidence threshold of 0.5 or 

50% for chromosome 12 (Table 4.2) and 0.45 for the whole rice genome. We chose 

confidence thresholds with estimated FDR below 1% in both cases in order to focus on 

the more conserved fragmented repeat families in the rice genome for our initial 

screening. 

Spatial relations between RepeatScout families with confidence above the 

confidence threshold and statistically significant at p=0.05 were used to construct a 

directed weighted graph. The vertices in this graph represent RepeatScout families and 

the edges correspond to the relationship between a pair of RepeatScout families. The 
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connected components from this graph are extracted to provide sets of spatially related 

RepeatScout families, each of which is grouped into a ProxMiner family. 

 

Table 4.3 

Comparison of the directed graphs constructed from the rice datasets 

 Confidence 

threshold 

Vertices Edges 

Chromosome 12 0.5 415 951 

Whole genome 0.45 3592 7857 

 

 

A directed graph was constructed using relationships from chromosome 12 with 

confidence above the 0.5 confidence threshold and with a p-value cutoff of 0.05 while, 

for the whole genome dataset, relationships with confidence above the 0.45 confidence 

threshold were used (See Table 4.3). The proportion of edges to vertices was similar in 

both the directed graphs. 
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Table 4.4 

The size profile of ProxMiner families from the two rice datasets including singletons 

RepeatScout 

families in a 

ProxMiner family 

Chromosome 

12 

Whole 

genome 

1 250 3067 

2 60 463 

3 21 191 

4 11 99 

5 8 57 

6 2 27 

7 2 14 

8 3 15 

9 0 12 

10 or more 4 52 

 

 

We extracted 112 connected components (ProxMiner families) of two or more 

RepeatScout families from the directed graph for chromosome 12 where each ProxMiner 

family consists of 3.59 components on average. Similarly, we extracted 930 connected 

components of two or more RepeatScout families representing ProxMiner families from 

the graph for the whole genome and found them to contain 3.74 components on average 

(See Table 4.4). Table 4.4 shows that the majority of ProxMiner families discovered on 

chromosome 12 (53%) and the rice whole genome (50%) consist of two RepeatScout 

families. 
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Figure 4.4 

A comparison of the number of components in a ProxMiner family with its similarity to 

known repeat regions 

 

 

Figure 4.4 shows the similarity of ProxMiner families to known repeats [45, 128] 

as a function of family size. Because the focus of our research is identifying fragments of 

families that can be combined, we do not include singletons (Table 4.4 and Table 4.5) 

representing RepeatScout families that were not associated with other families in our list 

of ProxMiner families. We divided the ProxMiner families into three categories: known, 

extended and novel repeat regions based on the number of components in a connected 

component that shared similarity with known repeats (See Table 4.5 and Appendix A). 

The proportion of ProxMiner families with no similarity to known repeats decreases as 
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the number of components per ProxMiner family increases. These observations 

emphasize the effectiveness of ProxMiner for discovering short novel repeat families. 

The results in Table 4.5 show that ProxMiner condensed the 653 components from 

chromosome 12 to 362 ProxMiner families (112 connected components and 250 

singletons) and the 6554 components from the entire genome to 3997 ProxMiner families 

giving reductions of 44% and 39% respectively. This provides a much more reasonable 

number of families for subsequent characterization and analysis by biologists. If we 

disregard singleton components shorter than 100 bp in length, the number of ProxMiner 

families for chromosome 12 is reduced to 333, a reduction of 49%. Therefore, we have 

shown that ProxMiner successfully merged fragmented repeat regions on chromosome 12 

and the entire genome. 

 

Table 4.5 

Overview of results from the graph mining procedure of ProxMiner 

 ProxMiner 

families 

RepeatScout 

families that 

remained 

singletons 

Novel 

ProxMiner 

families 

Extended 

ProxMiner 

families 

Known 

ProxMiner 

families 

Chromosome 

12 
112 221 87 22 224 

Whole 

genome 
930 3067 2302 219 1046 

 

 

We compared the initial families found by RepeatScout and the ProxMiner 

families identified by our algorithm against known repeats [45, 128] to study the 

defragmentation achieved for different classes of known repeats. Table 4.6 shows that the 
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majority of matches found in both datasets were in two classes of known repeats 

(retrotransposons and DNA transposons).  

 

Table 4.6 

Presence of known repeats in the initial RepeatScout families, ProxMiner connected 

components of size 2 or greater and in the remaining singletons from rice  

chromosome 12 (Chr 12) and whole genome (WG) 

 

Repeat Class 

Initial 

RepeatScout 

families 

ProxMiner 

families 

Number of singleton 

RepeatScout families 

 Chr 

12 
WG 

Chr 

12 
WG 

Chr 12 
WG 

Retrotransposons 

SINE 17 76 3 4 2 5 

LINE 9 132 1 18 3 50 

Ty1/Copia LTR 47 207 12 27 11 71 

Gypsy LTR 180 601 32 72 44 241 

LTR 13 70 3 6 4 30 

DNA Transposons 

En-Spm 55 280 6 33 10 79 

MuDR 33 295 9 36 13 87 

Tourist/Harbinger 29 300 5 27 17 134 

TcMar-Stowaway 28 171 3 15 15 45 

hAT-Ac 5 50 1 6 0 7 

hAT  15 107 3 16 6 34 

DNA 86 535 10 49 30 147 

Others 

Helitron 0 42 0 6 0 6 

Unclassified 3 26 1 3 1 2 

Satellite 0 11 0 2 0 1 

No known annotation 

Novel repeats 198 4672 23 610 64 1692 
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4.4 Evaluation of ProxMiner 

Discovery and characterization of repetitive regions in DNA is a rapidly 

developing area of research [167-169]. We have demonstrated that the ProxMiner 

algorithm can be used to identify potentially novel diverged and fragmented repeat 

regions in the genome and that it is particularly useful for identifying smaller repetitive 

elements. In this section, we further demonstrate the utility of ProxMiner by providing a 

detailed analysis of selected repeat families identified by ProxMiner in the rice genome, 

compare the capabilities of ProxMiner to the capabilities of other repeat analysis tools 

that address similar problems, and an provide an evaluation by biologists who work in the 

area of repeat analysis. 

 

4.4.1 Validation of results 

First we demonstrated ProxMiner’s effectiveness as a discovery algorithm 

through a detailed analysis conducted in collaboration with Dr. Zenaida Magbanua and 

Dr. Daniel Peterson—both biologists with expertise in the area of repeat analysis and 

discovery [14, 15, 170, 171]. We have selected some of the ProxMiner families 

discovered in the mining of chromosome 12 for further analysis in context of the entire 

rice genome. The connected components used for examples include two novel repeat 

regions (DR1 and DR2) and one extension of a known repeat region (DR3). We use DR 

as an abbreviation of Diverged Repeat. We worked with biologists to explore these 

ProxMiner repeats using a genome browser [164], the annotation information provided 
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by ProxMiner, multiple sequence alignment, and molecular biology experiments (See 

Appendix C for experimental protocol). 

 

 

Figure 4.5 

A view of multiple sequence alignment of a set of DNA sequences 

 

A genome browser [164] is a web based visualization of a genome and associated 

annotations. Figure 4.3 shows a screen shot of a portion of the rice genome displayed in 

the GBrowse browser. GBrowse [172] is a popular open source genome browser 

developed by the Generic Model Organism Database project [173-176] to enable 

biologists to compile, share and visualize features on a genome. We have deployed a 

local GBrowse for rice that displays the rice DNA sequence along with the locations of 

different features that have been identified on the genome sequence by the rice research 

community including known genes, gene predictions, experimental data, genetic markers, 

DNA alignments, protein alignments, etc. Researchers can also upload new annotations 

in standard formats that are displayed as tracks for viewing on the browser. We stored 
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ProxMiner repeats in GFF format [177] and imported custom tracks into GBrowse to 

enable biologists to explore the genomic context of the ProxMiner repeats. 

Multiple sequence alignment is a commonly used method for finding regions of 

similarity among a set of DNA or protein sequences. We used the ClustalW [162] tool to 

align a set of DNA sequences representing instances of ProxMiner repeat families on the 

rice genome. We then visualized the alignment with Jalview [166] to analyze the DNA 

sequences for regions where identity is conserved (e.g., Figure 4.5). In the figure, a 

highly conserved section is demarcated by a red circle and a poorly conserved section is 

enclosed within a green circle. An insertion of CAA in one sequence is shown by a blue 

circle. 

 

 

 

 

 

 

 

Figure 4.6 

Schematic of results of a PCR experiment 

 

 

  A      B      C     D     E       F       G     H    I    Ladder 
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We have also validated the predictions produced by our algorithm using 

molecular biology experiments. Researchers have developed a number of methods to 

analyze repeat regions in DNA in the laboratory [178-180]. One of the most widely used 

methods is the polymerase chain reaction (PCR) that allows one to determine the 

abundance of a DNA sequence in the genome based on the presence of short conserved 

regions of the sequence and also provides information about the relative size of the DNA 

region found. See Figure 4.6 for an example of an output of a PCR experiment. The 

presence of a band in a column confirms the presence of the target sequence in the DNA 

sample loaded in that column. The position of the band is used to estimate the sample 

size by comparing the bands produced by a sample of DNA to segments of known size 

called a ladder (last column in Figure 4.6). A ladder is used to calibrate the lengths of 

DNA sequences produced by PCR. A more complete description of PCR and its use for 

studying repeats is given in Appendix C [181]. One of our collaborators, Dr. David Ray 

has used PCR to describe DNA transposon activity in bats [182, 183] and to analyze a 

novel repeat region in crocodiles [184]. Another of our collaborators, Dr. Cedric 

Feschotte has also utilized PCR experiments to examine the presence or absence of SPIN 

transposons in mammals [185] and in a study of enzymes related to repeats in flowering 

plants [186]. The regions of DNA produced using PCR are often subsequently extracted 

and sequenced [183] for comparison with other sequenced genomes. 

We used PCR to verify the presence of the ProxMiner families in DNA extracted 

from several rice species. We used the genome sequence from Oryza sativa (Nipponbare, 

japonica cultivar group) for our experimental dataset [164]. We refer to this species as the 
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reference species. We selected a set of related rice species to explore for the presence of 

the families we have discovered. Dr. Susan McCouch at Cornell University graciously 

supplied the DNA for these experiments. These species are Oryza sativa (indica), Oryza 

glaberrima, Oryza nivara, Oryza rufipogon and Oryza officinalis. Oryza sativa 

(Nipponbare, japonica cultivar group) and Oryza sativa (indica) are the domesticated 

species of rice grown in Asia as a food source. Oryza rufipogon and Oryza nivara are 

wild relatives of rice from which the domesticated Oryza sativa is thought to have 

evolved [187]. Oryza glaberrima is a cultivated variety from Africa [188]. Oryza 

officinalis is a wild variety of rice from China with genes of economic importance such 

as insect resistance and high water stress tolerance [189]. We have selected a diverse set 

of species from the Oryza genus to estimate the conservation of our ProxMiner families 

across the whole genus. The goal was to confirm that the repeat families identified by 

ProxMiner exist in various rice species, to find the size of the repeat families in those 

species and to deduce their evolutionary history, if possible. 
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Table 4.7  

Details about component families from rice chromosome 12 (Chr 12) and the whole 

genome (WG) for DR1, DR2 and DR3 ProxMiner families 

 

Number of 

elements 

Average length 

(bp) ProxMiner 

family 
Component 

Chr 

12 
WG 

Chr 

12 
WG 

Consensus 

sequence length 

(bp) 

R546 28 158 522 494 739 
DR1 

R391 33 221 275 269 336 

R398 47 372 73 74 82 

R956 44 528 86 81 114 DR2 

R418 32 338 56 55 60 

R970 30 410 109 140 

128 

(91.4% annotated 

as SETARIA1) DR3 

R293 25 442 169 109 244 
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Table 4.8 

Details about spatial relationships from rice chromosome 12 (Chr 12) and the whole 

genome (WG) for DR1, DR2 and DR3 ProxMiner families 

 

Confidence 
Average 

distance (bp) 

Standard 

deviation in 

distance (bp) 
ProxMiner 

family 
Relationship 

Chr 

12 
WG 

Chr 

12 
WG Chr 12 WG 

DR1 
R391 upstream 

R546 
0.89 0.91 128 -54 1290.9 1027.53 

R956 upstream 

R398 
0.86 0.88 -20 18 55.46 583.72 

R418 upstream 

R398 
0.81 0.73 168 239 113.82 973.65 DR2 

R418 upstream 

R956 
0.75 0.80 109 159 103.46 905.26 

DR3 
R970 upstream 

R293 
0.76 0.61 688 1183 442.11 1769.45 

 

 

4.4.1.1 DR1 repeat family 

 

 

Figure 4.7 

Illustration of DR1 composed of two components (R391 and R546) 

 

The DR1 novel repeat family (Figure 4.7) consists of two conserved sections 

represented by two RepeatScout repeats (R391, R546). The lengths of consensus 

sequences for R391 and R546 are 336 bp and 749 bp respectively. On rice chromosome 
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12, the average distance between the elements of the two families is 128 bp as compared 

to -54 bp for the whole genome analysis (See Table 4.7 and Table 4.8). The negative 

distance indicates an overlap spatial relationship. The overlap and high confidence (0.91) 

of the relationship shows that elements of the two RepeatScout families are consistently 

co-located in close proximity. 

 

 

Figure 4.8 

Multiple sequence alignment of instances of DR1 repeat family on rice chromosome 12. 

Insertions/deletions are in red circles 
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Both the repeats have no similarity with known repeat regions [45, 128]. The 

multiple sequence alignment of instances of DR1 on rice chromosome 12 shows good 

overall conservation with clear insertions/deletions in some regions (Figure 4.8). The 

multiple sequence alignment confirms that we have discovered a fragmented repeat 

family for which two separate repeats were reported by the ab initio repeat finder 

RepeatScout. Exploration of instances of DR1 on the rice genome browser (Figure 4.9) 

reveals that it is found in disease resistance genes and NBS-LRR proteins [190] for 15 of 

the 19 instances on rice chromosome 12. The GBrowse snapshot (Figure 4.9) reports the 

disease resistance gene (in green) as expressed, which implies that experimental evidence 

has been found for a protein corresponding to this gene. A number of genes near or 

overlapping with the ProxMiner family are expressed. The presence of a protein for a 

gene denotes that the gene is active in the organism and this makes our discovery more 

interesting for biologists. 

 

 

Figure 4.9 

An instance of DR1 on rice chromosome 12 in the rice genome browser 
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We used PCR to study the instances of DR1 repeat family in a number of species 

in the rice genus. The objective here was to verify the presence of DR1 in rice DNA and 

to identify the lengths of DR1 in the different species. 

 

 

Figure 4.10 

PCR results for DR1 repeat family in various rice species 

 

The PCR results show that DR1 repeat family was found in the reference genome 

Oryza sativa (japonica) and also in Oryza sativa (indica), Oryza nivara and Oryza 

rufipogon. It is absent in Oryza glaberrima, a cultivated species from Africa and in Oryza 

officinalis, a wild species from China. The product from the experiment is of the expected 

length at 600 bp. Moreover, the length of the product was the same in all the species 

where it was found indicating conservation of this repeat family in Oryza genera. The 
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PCR results (Figure 4.10) show that the family is conserved in the wild relatives (Oryza 

nivara and Oryza rufipogon) as well as domesticated species of rice (Oryza sativa 

(japonica) and Oryza sativa (indica)) from Asia. 

The DR1 repeat family is found in nucleotide binding site leucine rich repeat 

(NBS-LRR) [191] disease resistance genes. The NBS-LRR proteins mediate interaction 

among various proteins and also have protein activation roles [191]. Disease resistance 

genes have been reported to exist in multiple inexact copies in plant genomes [192]. This 

diversity is maintained so that the plant can tap new sources of resistance to respond to 

pathogens that have developed tolerance to current resistance genes. In conclusion, we 

hypothesize that we have discovered a novel repeat family that may be active and play a 

role in the disease resistance mechanism of rice [193, 194].  

 

4.4.1.2 DR2 repeat family 

 

 

Figure 4.11 

Illustration of DR2 composed of three components (R418, R956 and R398) 

 

The DR2 novel repeat family (Figure 4.11) consists of three repeats (R418, R956 

and R398) reported by RepeatScout and the lengths of consensus sequences for all 

components are relatively short at 60 bp, 114 bp and 82 bp respectively. The DR2 repeat 

family is an example of a novel fragmented repeat comprised of very short conserved 
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sections. This ProxMiner family was constructed from three spatial relationships (see 

Table 4.7 and Table 4.8). The average distance between the three is less than 168 bp on 

chromosome 12 and less than 239 bp in the whole genome, denoting that elements are 

found very close to one another. For R956 and R398, we also observe an overlap spatial 

relationship on chromosome 12. 

 

 

Figure 4.12 

Multiple sequence alignment of instances of DR2 repeat family on rice chromosome 12 
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The multiple sequence alignment of instances of DR2 on rice chromosome 12 

shows weak conservation overall (Figure 4.12). The lengths of the instances vary over a 

wide range from 123 bp to 4582 bp.  We found a majority of instances of DR2 to exist in 

the intron regions of predicted genes using the rice genome browser (Figure 4.13). The 

environment around the instances was enriched in repeats. A number of instances were 

also located upstream of genes, some of which are expressed and are involved in 

responding to external stimuli [195] or disease resistance [164]. 

 

 

Figure 4.13 

An instance of DR2 on rice chromosome 12 located within an intron and near a disease 

resistance gene 
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The PCR results are similar to those for the DR1 repeat family. We find that the 

DR2 repeat family exists in the reference genome Oryza sativa (japonica) and in Oryza 

sativa (indica), Oryza nivara and Oryza rufipogon. The products from the experiment are 

of expected lengths (1000 bp). The length of elements is also found to be conserved 

across all the species where the family is observed. 

 

 

Figure 4.14 

PCR results for DR2 repeat family in various rice species 

 

 

 

The DR2 ProxMiner repeat family with its short conserved sections represents a 

previously unknown ancient repeat region in the rice genome. The PCR results show the 

conservation of this repeat family in wild and domesticated species of rice from Asia. Its 

conservation across Oryza genera, presence in repeat rich areas and in introns of 
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predicted genes leads us to hypothesize that DR2 may be an inactive novel repeat region 

in Asian rice species. 

 

4.4.1.3 DR3 repeat family  

 

 

Figure 4.15 

Illustration of DR3 composed of two components (R970 and R293). R970 is similar to 

the known repeat SETARIA1 in rice 

 

 

We report the DR3 repeat family discovered by ProxMiner as an extension to a 

known repeat region. SETARIA1 [196] is a non-autonomous Mutator-like [197] DNA 

transposon found in rice. DR3 is made up of components R970 and R293 (See Table 4.7 

and Table 4.8). The consensus sequence for R970 has a length of 128 bp and shares 91% 

similarity with SETARIA1. R293 with a consensus sequence of 169 bp is found 

downstream of R970 and does not have any similarity to SETARIA1 or any other known 

repeat. The SETARIA1 DNA transposon has a length of 1293 bp [196].  
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Figure 4.16 

Multiple sequence alignment of instances of DR3 on chromosome 12 dataset 

 

The multiple sequence alignment of instances of DR3 on rice chromosome 12 

shows weak conservation (Figure 4.16). The lengths of the instances vary over a wide 

range from 569 bp to 2178 bp. 

Exploration of instances on the rice genome browser reveals that a majority of the 

instances consist of consecutive overlapping elements of R970 and R293 (Figure 4.17). 
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We also find instances to exist in introns of predicted genes or in protein rich regions 

with proteins annotated for stress response such as MLA1 [164, 195]. 

 

 

Figure 4.17 

An instance of DR3 on rice chromosome 12 on the genome browser 
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Figure 4.18 

PCR results for DR3 repeat family in various rice species 

 

The PCR results for DR3 repeat family suggests that although the repeat family 

exists in the reference genome Oryza sativa (japonica), it has two forms in Oryza sativa 

(indica). One of these forms is conserved in both Oryza nivara and Oryza rufipogon, both 

wild species from Asia, with comparatively more elements present in Oryza nivara, a 

wild species from Africa. Interestingly, the other form is present in large numbers in 

Oryza glaberrima, a cultivated variety from Africa. Both forms are absent from Oryza 

officinalis, a wild species from China. Our reference genome, Oryza sativa (japonica), 

contains the form whose size is consistent with the elements of this repeat family (900 

bp). The discovery of DR3 repeat demonstrates how ProxMiner can extend knowledge of 

known repeat regions. The presence of multiple forms in the Oryza genus and low 
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conservation in the multiple sequence alignment of instances suggest that the region is 

under low evolutionary pressure. 

In conclusion, we hypothesize that the DR3 repeat family discovered by 

ProxMiner is a variant of the SETARIA1 DNA transposon [196] where R293 in an 

insertion in the original SETARIA1 repeat. 

 

4.4.2 Comparison to defragmentation tools 

In the literature review (Chapter 2), we described some algorithms that use spatial 

proximity knowledge to discover fragmented repeat regions in DNA. We now compare 

our ProxMiner algorithm with other available defragmentation algorithms in terms of 

their utility for defragmenting and discovering novel repeats (Table 4.9). 
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Table 4.9 

Comparison of capabilities of available defragmentation algorithms with ProxMiner 

 
TCF 

[49] 

LTR_Miner 

[140] 

TEnest 

[141] 

REannotate 

[142] 
ProxMiner 

Uses standard input 

format 
+ +AR only - + + 

Can be used to 

analyze known 

repeats 

+RT 

only 

+AR only, 

RT only 

+RT 

only 
+RT only + 

Can be used to 

analyze ab initio 

repeat families 

- - - - + 

Visualization of 

discovered repeat 

families 

+ - + + + 

Defragmentation of 

individual repeats 
+ +AR only + + + 

Defragmentation of 

repeat families 
- - - - + 

(AR stands for Arabidopsis thaliana, RT stands for retrotransposons) 

 

Transposon Cluster Finder (TCF) was designed by Giordano et al. [49] to 

defragment known repeats in DNA and compute their chronological order based on the 

occurrence of nesting of one repeat within another. TCF is designed to defragment 

various known repeats including LTR retrotransposons, DNA transposons, LINEs and 

SINEs [39, 169, 198, 199]. LTR_MINER by Pereira [140] was specifically designed to 
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defragment LTR retrotransposons in the five chromosomes of Arabidopsis thaliana. The 

TEnest algorithm by Kronmiller et al. [141] and REannotate by Pereira [142] are both 

designed to defragment, compute the chronological ordering of LTR retrotransposons and 

visualize nested repeats given a database of repeats. The predominant focus for these 

tools is to understand a known repeat and identify its interactions with other known 

repeats from the arrangement of these repeats on the genome. 

All aforementioned tools except TEnest accept repeat families as input in a 

standard and widely used input format. These defragmentation algorithms are designed to 

specifically work with known repeat regions such as LTR retrotransposons. They use 

spatial heuristics derived from sequence characteristics of known repeat regions to 

identify and attempt to defragment known repeat regions. All the tools describe their use 

only with known repeats but, with the exception of TEnest, they can be adapted to 

defragment repeat families discovered by an ab initio repeat finder such as RepeatScout. 

The input files required by TEnest are particular to the LTR retrotransposons class of 

known repeats. ProxMiner can be used to analyze both known repeats, ab initio repeat 

families and a combination of the two. Defragmenting known repeats along with ab initio 

repeat families is a useful method to extend the knowledge about known repeat regions as 

we have demonstrated with the DR3 repeat family. Please note that LTR_Miner can only 

be adapted to work with known and ab initio repeats for the Arabidopsis thaliana 

genome, unlike other tools that can be applied to any genome of interest. All the 

algorithms discussed here have a visualization component except LTR_Miner. Like 

ProxMiner, TCF and REannotate use genome browsers [164] to display the defragmented 
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repeats. TEnest includes a visualization engine called svg_ltr that generates graphical 

displays for the repeats defragmented by TEnest. The visualization provided by TEnest 

does not include information about other features on the genome such as genes that are 

available on a genome browser. Table 4.10 shows the rich set of information produced by 

ProxMiner to assist the biologist in exploring and characterizing the ProxMiner repeats. 

These include files for sequence analysis and visualization on GBrowse[172], a genome 

browser. The other defragmentation algorithms are designed to address only known 

repeats and therefore do not provide any information to help characterize the 

defragmented repeats. 

 

Table 4.10 

Overview of information produced by ProxMiner about the repeat families it discovers 

Information 

type 

Description 

ProxMiner 

families 

Information about all connected components including member 

RepeatScout families and details of any similarity to known 

repeats. Information about spatial relationships and relevant 

properties like average distance is also included. 

Statistics 

Information about of connected component sizes. Summarization 

of similarities of ProxMiner families and remaining RepeatScout 

singletons to known repeats. 

DNA 

sequences 

Instances of the ProxMiner family on the genome including 

flanking sequences. The flanking sequences are useful for 

biologists analyzing ProxMiner results. 

HTML 

genome 

browser file 

An interface HTML file that links out to an online genome 

browser, GBrowse [172]. 
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The available defragmentation algorithms have not been designed specifically for 

defragmentation of repeats but use defragmentation as a means to discover the nesting 

order and chronology of known repeat regions. The focus on known classes of repeats 

decreases their utility when modified to discover novel repeat regions. This drawback is 

exacerbated when they are applied for repeat discovery in newly sequenced genomes for 

which very few or no known repeats have been reported. When supplied ab initio repeat 

families, all available defragmentation algorithms presume that each input repeat family 

represents a true and complete repeat region and therefore, do not look for associations 

among the repeat families. Available methods analyze and defragment each given repeat 

instance in isolation instead of trying to discover a higher level grouping among repeat 

families. Using the classes and objects analogy, the available methods only find 

relationships between instances and not relationships between the classes themselves. 

We used the 653 RepeatScout families from chromosome 12 as input to the 

available defragmentation tools to evaluate their effectiveness for ab initio repeat families 

and compared their results to the results from ProxMiner (when possible). The first tool, 

TCF, produces a list of regions on chromosome 12 where elements of a RepeatScout 

family exist within a 500 bp range. In essence, the output is a list of the repeat rich 

regions on the chromosome. The list of 470 clusters produced is not directly comparable 

to the output from ProxMiner since TCF discovers relationships among individual 

instances while ProxMiner discovers associations among component repeats that occur 

across the genome. This demonstrates that TCF is not effective in defragmenting ab initio 

repeat families. We were not able to conduct a direct comparison of ProxMiner with the 
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second and third tools--LTR_MINER and TEnest. LTR_MINER cannot be applied to 

genomes other than Arabidopsis. TEnest requires input files specific to a single class of 

known repeats--LTR retrotransposons. Even when TEnest is given a database of LTR 

retrotransposons, TEnest only produces a list of coordinates of defragmented elements 

along with the nesting level but no information about which LTR retrotransposons are 

consistently co-located. Given the 653 repeat families generated from rice chromosome 

12, the fourth tool, REannotate, produces a list of defragmented elements for each family. 

Like other defragmentation algorithms, it defragments each ab initio repeat family in 

isolation and therefore, is not effective for identifying associations among repeat families 

that ProxMiner is able to discover. 

 

4.4.3 User feedback from biologists 

We also worked with our end-users, molecular biologists in the Department of 

Plant and Soil Sciences at Mississippi State University, to evaluate the utility of our 

algorithm and to validate the predictions. The biologists were given a short introduction 

to ProxMiner and its output files and then asked to analyze and characterize a set of 

ProxMiner repeat families. Each was then asked to fill out a survey form and their 

feedback has been included as Appendix B in this dissertation and summarized below. 

The primary method available to biologists for analysis of repeat families 

generated by ab initio repeat finders is to use BLAST [130] based systems [200] to find 

the elements of the families. The locations of these elements can then be used to discover 

families that co-occur for subsequent analysis. However, the large number of families 
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makes this approach very time consuming and labor intensive. The results produced by 

our algorithm provide biologists with a condensed summary of the repeat families that 

co-occur frequently. We also include information about spatial distribution of the 

families, visualization of the repeat regions and any similarity to known repeats (Table 

4.10). This enables biologists to analyze each data point and perform association studies 

for repeats, an important area of research that has not been addressed by any of the 

previously available defragmentation algorithms. Our algorithm will also enable spatial 

analysis of other features on DNA such as genes and regulatory elements.  

A user guide and more user-friendly interface to all the information produced was 

requested in the feedback process (Appendix B) to enable a biologist to easily interpret 

results. We will be working with biologists to develop an improved interface before this 

work is submitted for publication. 

 

4.5 Conclusions 

In this chapter, we have demonstrated that our approach of using spatial data 

mining followed by graph mining can be successfully applied to identify weakly 

conserved patterns among features in genomic data. The application of pairwise spatial 

relationships increased the sensitivity of our algorithm while the use of a confidence 

threshold based on false discovery rate reduced the noise in our results. 

Using a case study of ab initio repeat finding, we have shown that our algorithm 

is able to condense the number of repeat families discovered by an ab initio repeat finder 

for subsequent analysis by biologists by grouping 6554 RepeatScout families from the 
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rice genome into 3997 ProxMiner families. Available defragmentation algorithms only 

defragment elements belonging to a single repeat family while ProxMiner discovers 

associations among repeat families to identify larger more complete repeat families. We 

have reported and analyzed two examples of novel repeat families and one example of a 

known repeat family that is extended by ProxMiner. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

 

The central focus of this dissertation is the mining of one dimensional genomic 

sequence data for highly degenerate patterns using a combination of association rule 

mining and graph mining. We show that our approach can be utilized effectively to 

address the problem of defragmenting repetitive DNA for the discovery of novel diverged 

repeat regions. 

Our interest in repetitive regions in DNA was the motivation for conducting a 

comprehensive survey of available repeat finding algorithms [14]. We also performed an 

empirical comparison of a subset of these algorithms [15]. The results of the empirical 

analysis of a set of ab initio repeat finders revealed that a majority of the novel repeats 

found were short repeat families that are actually fragments of larger families. There was 

a large variation in the sensitivity and specificity of the repeat finders we evaluated. 

Some of the weaknesses we discovered in ab initio repeat finders included 

underestimation or overestimation of repeat content, short consensus sequences and high 

memory requirement. One study reports a manual process for defragmentation of repeats 

in the pig genome [201], but there are no ab initio repeat finders that defragment the 

novel repeat families they discover. Defragmentation of ab initio repeat families, as we 

have shown in our results from ProxMiner in Chapter 4, can identify larger repeat 
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families encompassing multiple ab initio repeat families. Moreover, defragmentation of 

repeats from newly sequenced genomes can help characterize novel repeats by 

associating them with known repeats in the genome. 

In this dissertation, we have demonstrated that spatial association rule mining 

followed by graph mining can be used to discover weakly conserved patterns in genomic 

data. The case study demonstrates how our ProxMiner algorithm can be used to 

defragment repeat families in the genome. We describe the contributions of our work for 

data mining and repeat discovery research followed by limitations and future work in the 

subsequent sections of this chapter. 

 

5.1 Contributions 

This dissertation makes several contributions to the field of bioinformatics and 

data mining. The key contribution is the development of a novel spatial data mining 

algorithm. Our approach differs from other association rule mining approaches because 

we begin by discovery of significant binary associations among genomic features and use 

these associations to build a directed graph where the edge weights are the strength of the 

associations. This two step process allows us to detect more subtle associations among 

large groups of features than is possible when using association rules that require all 

features to be present in qualifying “transactions.” We demonstrate that our new 

algorithm can be successfully applied to discover novel repeat families in the rice 

genome. 
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We have implemented a tool for repeat discovery called ProxMiner as a case 

study. ProxMiner uses spatial association rule mining and graph mining to identify 

fragments of a repeat family on the genome and assemble the fragments for analysis by 

biologists. Our technique provides some major improvements over available algorithms 

as described below. 

1. Other defragmentation algorithms cluster only items with the same labels 

together while we find associations among items with both the same and with 

different labels. We use association rule mining to find repeat families that are 

co-located consistently. This approach enables ProxMiner to construct larger 

repeat families as compared to other ab initio repeat finders. Combining 

association rule mining with graph mining supports inference of transitively 

related components and thus provides ProxMiner with increased sensitivity 

for identification of weakly conserved parts of repeat families. 

2. ProxMiner can work with both known repeats, novel repeats detected by an ab 

initio repeat finder or a combination of the two. Other available 

defragmentation algorithms are designed to work specifically with known 

repeats. 

3. We produce detailed characterization reports for all repeats [45, 202-204] 

defragmented by ProxMiner (Table 12). We also provide means for 

interfacing with genome browsers to allow biologists to visually explore a 

repeat in its genomic context [172]. Other defragmentation algorithms focus 

only on visualization of defragmented repeats. 
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4. We have also developed a method for evaluating the confidence of spatial 

association rules derived from genomic data using Monte Carlo simulation to 

estimate false discovery rates for discovered binary relationships and the Chi-

square (χ
2
) statistic for measuring the significance of individual associations. 

Other repeat discovery and repeat defragmentation methods do not provide 

these capabilities. 

We have demonstrated the effectiveness of ProxMiner for repeat discovery by 

analyzing the Oryza sativa (japonica) genome. We report two novel repeat families and 

one repeat family extension. The DR1 novel repeat family is an example of a repeat 

family involved in disease resistance and demonstrates the continuum between repeats 

and genes in a genome. The DR2 novel repeat family is a typical example of an ancient 

and diverged repeat family where only small sections are conserved. The DR3 repeat 

family is related to a known DNA transposon [196] and is an example that demonstrates 

how ProxMiner can be used to extend the knowledge of known repeat regions. 

These examples encompass some of the different types of repeat families that can 

be discovered by our algorithm. We have also discovered many other potentially 

interesting novel repeat families that can be further studied by biologists. ProxMiner will 

increase the effectiveness of repeat discovery techniques for newly sequenced genomes 

where ab initio repeat finders are only able to identify partial repeat families. The use of 

matching engines like BLAST for repeat families detected by an ab initio repeat finder 

followed by tedious and time consuming manual analysis is the other option currently 

available to biologists trying to defragment novel repeats. ProxMiner can be used in 
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conjunction with other repeat finders to identify repeats in a newly sequenced genome 

and as well as to locate novel repeats and extensions to known repeats in well studied 

genomes. 

Our algorithm has implications for bioinformatics research that extend beyond 

repeat regions. ProxMiner is designed to mine genomic DNA sequence and identify 

reoccurring spatial patterns. Using ProxMiner, it is possible for biologists to find spatial 

relationships among other genomic features of interest such as genes, transcription 

factors, repeats etc. These relationships can be used to discover associations between 

features and study “migration patterns” of different genomic features as well as identify 

novel interactions among them. 

 

5.2 Limitations 

The ability of ProxMiner to find repeats is dependent on the effectiveness of the 

ab initio repeat finder used to detect the initial set of repeat families. We have used 

RepeatScout [44] in our experiments because we found it to have high true positive rates 

and report long consensus sequences in an empirical comparison of various ab initio 

repeat finders [15]. The performance of ProxMiner will obviously improve as ab initio 

repeat finding algorithms improve. 

Our approach of using pairwise associations among components followed by 

graph construction and mining may result in inferring transitive relationships that do not 

exist. Such cases can be identified in subsequent analysis by biologists based on the 
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reports created by ProxMiner and during the visual exploration step of the ProxMiner 

repeat families. 

Our current Monte Carlo method for estimating the false discovery rate results in 

a false discovery rate that is greater than 100% for very low confidence values. We 

currently use a uniform distribution to generate locations for the simulated chromosome. 

A different method for generating the locations that results in a distribution of locations 

similar to the one found on the chromosome might eliminate this problem. 

Like any other repeat finding approach, the effectiveness of ProxMiner cannot be 

quantified strictly in terms of true positives or true negatives. This is because the exact 

number and identity of all repeats in an organism’s genome is unknown. The value of 

ProxMiner results can only be evaluated by biologists by analyzing the identified repeat 

families. 

 

5.3 Future work 

While developing an algorithm with a focus on addressing weaknesses in repeat 

discovery techniques, we have created a computational technique that can be applied to 

other spatial data mining problems in genomics. There are a number of extensions 

possible to the ProxMiner pipeline architecture, including the following: 

� Visualization: Available defragmentation algorithms and ProxMiner utilize 

genome browsers [172, 205] to visualize their results. There is no GUI that is 

tailored for visualizing novel repeat regions on the genome to aid biologists in 

the analysis and characterization of these important genomic constituents. 
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ProxMiner can be extended to visualize the defragmented repeats along with 

the available annotation information to help biologists to explore these regions 

with greater ease. Current browsers only allow viewing a single region of the 

genome at a time. A browser that allows exploration of multiple locations 

simultaneously would be particularly useful for comparative analysis of 

repeats. 

� Post discovery processing: ProxMiner currently reports instances of 

each repeat family that is present on the input genome. ProxMiner can 

be extended by building sequence analysis pipelines like SRCP [200] 

to: 

• Search for similarity to known repeats [45, 128] in order to classify 

a ProxMiner repeat family into known repeat classes or designate it 

as an extension to a known repeat region. 

• Use gene prediction algorithms [206, 207] to identify coding 

regions in the sequences that can explain their functional role in 

the genome. The proteins for the coding region can then be 

compared [130] to proteins in rice and related species. 

• Identify sequence features characteristic of repeat regions in DNA 

such as target site duplications (TSD) and terminal inverted repeats 

(TIR). We can search [138, 139] for the presence of such features 

in the instances and in the flanking regions to characterize a 

ProxMiner repeat family. 
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In the future, as datasets are scaled up to include multiple genomes and a larger 

number of features, we can consider parallelizing our spatial data mining algorithm. The 

association rule mining step is the computational bottleneck and this step can be easily 

parallelized by dividing the data among different processors, mining rules from each data 

subsequence, and then combining the counts. Assigning each chromosome to a different 

processor avoids boundary problems, but would result in load imbalance due to the 

different sizes of the chromosomes. 

Another promising extension to this research lies in further biological analysis of 

ProxMiner results. In this dissertation, we have discovered two novel repeat families and 

one repeat family that is an extension of a known repeat. A typical next step after 

discovery is to sequence the repeat region [183, 208] in other rice species for comparative 

genomics. We can sequence instances of DR1, DR2 and DR3 ProxMiner repeat families 

in other genomes for comparative studies and computational characterization. The 

instances of ProxMiner families can be identified in DNA using high throughput primer 

design [209] and PCR. 

Although our case study has focused on repeat discovery, the algorithm can also 

be applied to mine the spatial arrangement of other features in the genome. The presence 

of gene neighborhoods in eukaryotes has been reported in literature [110, 210-212] and 

gene islands are a known phenomena in prokaryotes [213-216]. Repeats have also been 

shown to play functional roles in the genome such as generation of new genes [20, 37], 

increasing genetic diversity [38, 40] and influencing expression of nearby genes [217-

219]. We can use ProxMiner to identify spatial relationships between genes, repeats and 
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other regulatory regions in rice etc. This has the potential to discover unreported 

interactions among these features.  

Our data mining approach can also be applied to one dimensional spaces other 

than a genome. Text mining and temporal data mining are possible application areas. 

 

5.4 Related publications 

A list of publications related to this work is presented below: 

• Saha S, Bridges S, Magbanua Z, Peterson DG (2008) Discovering 

relationships among dispersed repeats using spatial association rule 

mining. Highlights from the Fourth ISCB Student Council Symposium. 

BMC Bioinformatics, 9(Suppl 10):04. 

• Saha S, Bridges S, Magbanua Z, Peterson DG (2008) Computational 

approaches and tools used in identification of dispersed repetitive DNA 

sequences. Tropical Plant Biology, 1: 85-96. 

• Saha S, Bridges S, Magbanua Z, Peterson DG (2008) Empirical 

comparison of ab initio repeat finding programs for identification of 

repetitive DNA sequences. Nucleic Acids Research, 36: 2284-2294. 
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This appendix contains a list of all the connected components identified by 

ProxMiner on rice chromosome 12. Each connected component represents a ProxMiner 

family.  The connected components are classified [45, 128] into three categories: 

Confirms known repeat, Novel repetitive region and Extends known repeat. RepeatScout 

[44] has been used to discover the member families in each connected component. We 

have used RepeatMasker [128] with the Repbase [45] library of known repeats for 

identifying similarity to known repeats. 

 

Table A.1 

List of all ProxMiner families from rice chromosome 12 

Component Families Category Notes 

0 R=683, R=499 
Confirms known 

repeat 
OSTE27#DNA annotations for both 

families 

1 R=473, R=498 
Novel repetitive 

region 
No annotations 

2 R=155, R=131 
Confirms known 

repeat 
Corresponds to putative 

retrotransposon Ty1-copia like 

3 R=1296, R=177 
Confirms known 

repeat 
MuDR DNA transposon 

4 R=549, R=1083 
Confirms known 

repeat 
RPO_OS SINE retrotransposon 

annotation for both families 

5 R=551, R=326 
Novel repetitive 

region 
No annotations 

6 R=431, R=819 
Confirms known 

repeat 
SZ-31_LTR#LTR/Gypsy 

annotations for both families. 

7 
R=706, R=272, 

R=706, R=149 
Confirms known 

repeat 
SZ-38_int# LTR/Gypsy annotations 

for all families. 

8 R=290, R=364 
Confirms known 

repeat 

Strong Os6_10_2L#LTR from the 

gypsy super family annotations for 

both families 

9 R=896, R=504 
Confirms known 

repeat 
R=896 as putative Ty3-gypsy RTRP. 

504 is low copy and short. 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

10 
R=707, R=393, 

R=1108, R=707 
Confirms known 

repeat 
Comp 48 with strong Os8_06_2L 

#LINE annotations for both families. 

11 R=674, R=200 
Novel repetitive 

region 

Families found in this order:  R=674, 

R=713, R=200, R=278.  Usually 

downstream of unclassified 

transposon 

12 
R=430, R=438, 

R=725 , R=438 
Confirms known 

repeat 
OSTONOR1_LTR #LTR/Copia 

annotations for all families 

13 R=6, R=134 
Confirms known 

repeat 
LTR annotations for both families 

14 R=770, R=644 
Novel repetitive 

region 

Corresponds to hypothetical protein.  

Upstream of retrotransposon.  

Concentrated in one area of Chr12. 

15 R=223, R=844 
Confirms known 

repeat 
Exist in a repeat rich region 

16 R=890, R=639 
Novel repetitive 

region 
No annotations 

17 R=324, R=42 
Confirms known 

repeat 
DNA transposon annotations 

18 R=718, R=410 
Confirms known 

repeat 
Copia LTR annotations for both 

families 

19 R=1010, R=455 
Novel repetitive 

region 
No annotations 

20 R=970, R=293 Extends known repeat 
MuDR Mutator transposase 

annotation for 970 

21 R=995, R=1005 Extends known repeat MuDR DNA transposon 

22 R=782, R=140 
Confirms known 

repeat 
Strong MuDR  Mutator transposase 

annotation for both families 

23 R=810, R=394 
Confirms known 

repeat 
3 families. Fam 505 and 28 with 81 

are in a different cluster 

24 R=54, R=1017 
Confirms known 

repeat 
Strong LTR annotations for both 

families 

25 R=162, R=105 
Confirms known 

repeat 
SINE 

26 R=741, R=605 
Novel repetitive 

region 
No annotations 

27 R=32, R=1039 
Confirms known 

repeat 
Explorer DNA transposon 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

28 R=120, R=758 
Confirms known 

repeat 
Both families 100% annotated as 

retrotransposons 

29 R=100, R=534 
Confirms known 

repeat 
Both families annotated as 

retrotransposons 

30 R=147, R=160 
Novel repetitive 

region 
No annotations 

31 R=825 R=851 
Novel repetitive 

region 

Always downstream of transposon 

mariner and upstream of a putative 

protein.  Mariners are not supposed 

to have 2 ORFs 

32 R=86, R=166 
Confirms known 

repeat 
Gypsy-like LTR element, aligns with 

a putative centromere sequence 

33 R=23, R=61 
Confirms known 

repeat 
Gypsy-like LTR, aligns with a 

putative retrotransposon 

34 R=391, R=546 
Novel repetitive 

region 
No annotations 

35 
R=154, R=319, 

R=153 
Confirms known 

repeat 
Gypsy LTR 

36 R=669, R=902 Extends known repeat DNA transposon annotations 

37 
R=246, R=368, 

R=381, R=535, R=45, 

R=465, R=637 

Confirms known 

repeat 
Corresponds to unclassified 

retrotransposon 

38 
R=252 U(0.71) 

R=216 
Extends known repeat Gypsy LTR 

39 R=596, R=938 
Novel repetitive 

region 
No annotations 

40 R=336, R=41, R=168 
Confirms known 

repeat 
Gypsy LTR annotations 

41 
R=287, R=585, 

R=829 
Confirms known 

repeat 
hAT DNA transposon annotations 

42 R=911, R=783 
Novel repetitive 

region 
No annotations 

43 R=169, R=481 
Confirms known 

repeat 
Stowaway DNA transposon 

annotations 

44 R=394 R=810 Extends known repeat 

In repeat rich regions with a variety 

of annotations.  467 almost always 

found also.  These are very short 

families 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

45 
R=360, R=812, 

R=126, R=159 
Confirms known 

repeat 
MuDR DNA transposon 

46 R=818, R=775 
Confirms known 

repeat 
Copia LTR annotations for both 

families 

47 
R=570, R=1103, 

R=264 
Novel repetitive 

region 
No annotations 

49 
R=471, R=17, R=215, 

R=854 
Confirms known 

repeat 
Connects a putative DNA transposon 

50 
R=270, R=439, 

R=903,  R=503 
Novel repetitive 

region 
No annotations 

51 
R=375, R=124, 

R=406, R=288 
Confirms known 

repeat 
Connects an unclassified 

retrotransposon 

52 
R=156, R=249,  

R=340 
Confirms known 

repeat 
TEMPINDAS #DNA/hAT DNA 

transposon annotation 

53 
R=680, R=271, 

R=1082, R=373 
Confirms known 

repeat 

Corresponds to known 

retrotransposon. 387 is Gypsy type. 

645 is SZ-43_LTR#LTR/Gypsy 

type. 

54 R=4, R=444 
Confirms known 

repeat 
Tourist DNA transposon annotations 

55 
R=713, R=278, 

R=1080 
Extends known repeat 

1080 has DNA transposon 

annotation 

56 

R=358, R=889, 

R=589, R=587, 

R=645, R=387, 

R=1017, R=1147 

Confirms known 

repeat 
8 families. Maps to well annotated 

Gypsy region 

57 R=437, R=165 
Confirms known 

repeat 

437 has OSLINE1-4# 

LINE/L1annot. 165 has ORMOSIA 

#SINE annotation 

58 R=488, R=383 
Confirms known 

repeat 
Strong F569#DNA /Tourist 

annotations for both families. 

59 R=688, R=401 
Confirms known 

repeat 
Strong ENSPM7_OS#DNA/ En-

Spm annotations for both families. 

60 R=337, R=219 
Confirms known 

repeat 
Lots of annotations to SC-

3_LTR#LTR/Copia for both families 

61 R=344, R=276 
Confirms known 

repeat 
MU_OS#DNA/MuDR annotations 

for both families. 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

62 

R=69, R=744, R=695, 

R=179, R=847, 

R=883, R=367, 

R=629 

Confirms known 

repeat 

EnSPM_OS#DNA/En-Spm 

annotation for most families. EnSpm 

is a DNA transposon with 4 

complete copies in rice. 

63 
R=505, R=28, R=81, 

R=98 
Confirms known 

repeat 
LTR Gypsy annotation for all 

families. 

64 
R=298, R=541, R=82, 

R=407, R=922, 

R=682 

Confirms known 

repeat 
hAT DNA transposon. Aligns with 

an Ac/Ds-like putative transposon 

65 
R=404, R=1095, 

R=462, R=449 
Confirms known 

repeat 

Corresponds to unclassified 

retrotransposon. There are nearby 

genes to almost all copies, but they 

are not well conserved. 

66 R=925, R=649 
Confirms known 

repeat 
Conf 1.0. These 2 are TEOS DNA 

transposons. 

67 
R=658, R=396, 

R=397 
Confirms known 

repeat 
Comp 41 with COPI1_I#LTR/Copia 

annotation for all families. 

68 
R=414, R=361, 

R=421 
Confirms known 

repeat 
SZ-36_LTR#LTR annotations for all 

families 

69 
R=513, R=737, 

R=513, R=386 
Confirms known 

repeat 
LTR annotations for all families. No 

single annotation that is consistent. 

70 
R=466, R=181, 

R=1161, R=779, 

R=181 

Confirms known 

repeat 
OSTE33#DNA/MuDR annotations 

for all families. families are short. 

71 R=170, R=94 
Confirms known 

repeat 
Full SZ-37_LTR#LTR/Copia  

annotations for both families 

72 R=313, R=1144 
Confirms known 

repeat 

Full CRR1_CH1-1-CRR1-

retrotransposon,-partial-sequence  

annotation for both families 

73 R=137, R=218 
Confirms known 

repeat 

Full 

RETROSAT2_LTR#LTR/Gypsy 

annotations for both families 

74 
R=777, R=411, 

R=529 
Confirms known 

repeat 
Strong CACTA-F#DNA/En-Spm 

annotations for all families 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

75 

R=1128, R=205, 

R=323, R=1019, 

R=536, R=321, 

R=303, R=483, 

R=620, R=564, 

R=370, R=118, 

R=873, R=423, 

R=893 

Confirms known 

repeat 
Corresponds to known 

retrotransposon 

76 
R=415, R=748, 

R=419, R=225 
Novel repetitive 

region 

Not conserved in other species.  

Sometimes next to other repetitive 

elements 

77 R=308, R=953 
Confirms known 

repeat 
Full MUDRN3_OS#DNA/MuDR 

annotations for both families 

78 R=759, R=657 
Novel repetitive 

region 

These two families found together 

alternating in 3 different areas.  

Other associated families are 

consistent.  Lots of MITES in the 

area 

79 
R=563, R=720, 

R=283, R=339, 

R=981 

Confirms known 

repeat 

Full ATLANTYS-

I_OS#LTR/Gypsy(RB) for all 

families besides others 

80 
R=330, R=301, 

R=1026, R=918 
Confirms known 

repeat 
Full SZ-24_LTR#LTR(MIPS) 

annotations for most families. 

81 R=206, R=487 
Confirms known 

repeat 
Full LTR RTRP annotation for 487. 

82 
R=787, R=338, 

R=238, R=888, 

R=609, R=19 

Confirms known 

repeat 

CACTA-I#DNA/En-Spm or 

SPMLIKE#DNA/En-Spm 

annotations for all families 

83 

R=385,  R=102, 

R=15, R=347, R=248, 

R=139, R=441, 

R=187 

Confirms known 

repeat 
Gypsy LTR annotations 

84 
R=418, R=956, 

R=398 
Novel repetitive 

region 
No annotations 

85 R=547, R=697 
Confirms known 

repeat 
Full SZ-36_LTR#LTR annotations 

for both families 

86 
R=615, R=48, R=282, 

R=163, R=359 
Confirms known 

repeat 

Full Os7_09_1L#Retroelement, 

Gypsy-B_int#LTR/Gypsy and  

GYPSY1-I_OS#LTR/Gypsy 

annotations for all families 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

87 
R=739, R=240, 

R=739, R=189 
Confirms known 

repeat 

Full Gypsy-B_int#LTR/Gypsy and 

GYPSY1-LTR_OS#LTR/Gypsy 

annotations for all families 

88 
R=1059, R=409, 

R=29, R=625, R=652 
Confirms known 

repeat 
Aligns with several MULEs and a 

number of putative expressed genes 

89 R=940, R=987 
Confirms known 

repeat 
Aligns with DNA transposons 

90 
R=490, R=642, 

R=1112, R=822, 

R=924 

Confirms known 

repeat 
DNA transposon annotation 

91 
R=672, R=227, 

R=167, R=941, 

R=1107 

Confirms known 

repeat 
Gypsy LTR annotations. Some 

unannotated families. 

92 

R=457, R=51, 

R=1252, R=309, 

R=604, R=241, 

R=790, R=671, 

R=477, R=856, 

R=726, R=580, 

R=312, R=325, R=88 

Confirms known 

repeat 
DNA transposon annotations. Some 

unannotated families 

93 R=116, R=353 
Confirms known 

repeat 
hAT DNA transposon 

94 
R=446, R=52, R=484, 

R=327, R=197 
Confirms known 

repeat 
Copia LTR annotations 

95 R=12, R=558 
Confirms known 

repeat 
Gypsy LTR annotations 

96 
R=963, R=785, 

R=107, R=661 
Confirms known 

repeat 
Copia LTR annotations 

97 

R=33, R=43, R=328, 

R=573, R=260, 

R=305, R=557, 

R=520, R=243, 

R=590, R=691, 

R=628, R=1034, 

R=191, R=132 

Confirms known 

repeat 
Gypsy LTR annotations 

98 R=799, R=871 
Novel repetitive 

region 
No annotations 

99 
R=184, R=769, 

R=999 
Confirms known 

repeat 
Gypsy LTR annotations 
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Table A.1 (contd.) 

List of all ProxMiner families from rice chromosome 12 

100 

R=192, R=901, 

R=592, R=515, 

R=794, R=659, 

R=614, R=824, 

R=633, R=663, 

R=608, R=255, 

R=334, R=348, 

R=501,R=151, 

R=752, R=576, 

R=250, R=650, 

R=1132, R=468, 

R=730, R=426 

Confirms known 

repeat 
DNA En/Spm transposon 

101 R=236, R=714 
Confirms known 

repeat 
STOWAWAY36_OS#DNA 

annotation for both families. 

102 R=333, R=79 
Confirms known 

repeat 
Gypsy LTR annotations 

103 
R=351, R=14, R=70, 

R=390, R=320 
Confirms known 

repeat 
Gypsy LTR annotations 

104 
R=104, R=662, 

R=865 
Confirms known 

repeat 
Gypsy LTR annotations 

105 R=366, R=500 
Novel repetitive 

region 
No annotations 

106 
R=150, R=1122, 

R=58, R=584 
Confirms known 

repeat 

RIRE3A_LTR#LTR/Gypsy and 

Os6_13_1L#LTR/Gypsy annotations 

for families. An LTR region 

107 
R=1198, R=105, 

R=1020 
Confirms known 

repeat 
SINE 

108 R=30, R=75, R=89 
Confirms known 

repeat 
Copia LTR annotations 

109 R=1071, R=852 
Confirms known 

repeat 
DNA transposon 

110 

R=235, R=1069, 

R=198, R=525, 

R=1027, R=299, 

R=228, R=417, R=99, 

R=959, R=489, 

R=194, R=307, 

R=1154, R=395, 

R=442, R=416 

Confirms known 

repeat 
CACTA, En/Spm sub-class 

111 
R=269, R=1143, 

R=508 
Confirms known 

repeat 
Gypsy LTR with Pack MULE with 

ULP1 protease domain 
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This appendix contains the feedback received from molecular biologists in the 

Department of Plant and Soil Sciences at Mississippi State University. The evaluators 

were provided with a short introduction to ProxMiner and then given a set of repeat 

families from ProxMiner results to analyze. They were then asked to complete a user 

survey. Their answers to the survey are given below. 

 

Evaluator 1 

Zenaida V. Magbanua, Ph.D. 

Department of Plant and Soil Sciences 

Mississippi State University 

Mississippi State, MS 39762 

Phone: 662-325-2455 

www.mgel.msstate.edu 

 

1. What computational tools do you use to discover and annotate repeats? What 

output do those tools produce?   

I mainly use BLAST, which gives an alignment of the sequences that aligned with 

my query sequence and the alignment score. 

2. In absence of ProxMiner 

a. How could you have otherwise discovered the repeats found by ProxMiner 

on Chr 12?   

BLAST  
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b. How much time would it have taken?   

Several weeks to a few months.  

c. Compare the information you would obtain using some other method to 

the information provided by ProxMiner.   

The information from ProxMiner gives a good detail and summary of the 

results.  It also allows the user to go back at the actual browser and 

visualize each data point locally and globally, to a certain extent.  These 

are two important aspects of data analysis. 

3. Do you find the output of ProxMiner useful? Why?   

Yes.  It’s easy to understand. 

4. How much time did it take for you to understand and use ProxMiners output?  

A few sessions. 

5. What additional information would you like ProxMiner to give you?   

I can’t think of any additional information at this time. 

6. How would you describe the novelty of ProxMiner?   

It’s the first program that deals with association studies in repeats.  This is an area 

of genomics research that is not yet explored and having this tool will definitely 

advance it. 

7. What did you like best about ProxMiner? What did you like the least?   

It’s user-friendly and smart.  We had a problem uploading the repeats file to the 

rice browser and though it’s not a problem with the tool, I hope it can be addressed when 

it is up and running. 
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Evaluator 2 

Daniel G. Peterson, Ph.D. 

Associate Professor 

Department of Plant and Soil Sciences 

117 Dorman Hall, Box 9555 

Mississippi State University 

Mississippi State, MS 39762 

phone: (662) 325-2747 

fax: (662) 325-8742 

website: www.mgel.msstate.edu 

 

1. What computational tools do you use to discover and annotate repeats? What 

output do those tools produce? 

I utilize RepeatMasker and the various BLAST algorithms available through 

NCBI to identify and annotate repeats.  My lab also uses a “sequence read 

classification pipeline” (SCRP) customized repeat identification pipeline [200] 

which includes analysis via RepeatScout.   

2. In absence of ProxMiner 

a. How could you have otherwise discovered the repeats found by ProxMiner 

on Chr 12?  

RepeatMasker would likely be used to identify repeats with similarity to 

known repeat classes.  Ab initio repeat identification of repeats could 
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potentially be performed using the SCRP or RepeatScout.  ProxMiner 

identified some repeats not identified by RepeatMasker and RepeatScout.  

These repeats may have been identified by the SCRP, but the SCRP uses 

sequence reads as data and thus it doesn’t really tell one much about 

repeat spatial organization. 

b. How much time would it have taken? 

Identification of the repeat content of a whole chromosome would 

probably take close to three weeks.  Annotation and characterization of the 

repeats would probably be a 6 month process. 

c. Compare the information you would obtain using some other method to 

the information provided by ProxMiner. 

No, thank you. 

3. Do you find the output of ProxMiner useful? Why? 

The ProxMiner output can be very useful.  Of note, I am unaware of any DNA 

sequence analysis program that identifies and describes spatial relationships 

between repeat families. 

4. How much time did it take for you to understand and use ProxMiners output?  

Mr. Saha did a good job of walking me through the output data so that I could 

understand what the various output values meant.  However, I could not have 

made head or tails of the data if I didn’t have his help. 

5. What additional information would you like ProxMiner to give you? 



www.manaraa.com

    

 134   

ProxMiner is an extremely powerful tool.  However, it lacks a user’s guide.  It is 

my understanding that a guide will be written in the near future.  The guide will 

need a clearly defined vocabulary list.  What is a family?  What is a connected 

component?  What are the various statistical values produced and what do they 

mean? These things need to be defined clearly (and when possible, concisely).  

I think data from an analysis needs to be distilled down into an HTML results 

page with links to more detailed results, graphs, etc.  I recommend something 

similar to Bunge, Chouvarine, and Peterson [220]. 

6. How would you describe the novelty of ProxMiner? 

To my knowledge, the proximity relationship mining performed by ProxMiner is 

novel among sequence analysis tools. 

7. What did you like best about ProxMiner? What did you like the least?  

  ProxMiner potentially opens doorways to new lines of research on the “migration 

patterns” of different genomic elements.  This has tremendous implications in 

comparative genomics.  I guess I like this potential of ProxMiner best.  I think the 

program needs lots of work on the “user friendliness” front if it is to actually be 

used by other research groups. 
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APPENDIX C 

POLYMERASE CHAIN REACTION 
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Polymerase chain reaction (PCR) [181] is a molecular biology technique to 

generate duplicates of a DNA substring present in a given DNA sample using a 

biochemical reaction. The DNA substring is targeted using short DNA strings called 

primers to initiate the duplication process. The duplication process is called 

amplification. PCR essentially displays the presence or absence of the targeted DNA 

substring in the given DNA sample along with the size of the region, if present. PCR is 

one of the most widely used techniques in a molecular biology laboratory and is a part of 

many experimental protocols. Xing et al. [1, 208] have explained the utility of PCR for 

investigating repeat regions and used PCR to study mobile element insertions in DNA of 

primates and humans. 

 

 

Figure C.1 

Description of PCR technique to generate copies of a target repeat region adapted from 

Xing et al. [1] 
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Figure C.2 

Schematic of results of a PCR experiment 

 

 

The PCR experiment (Figure C.1) starts with DNA from multiple organisms and 

sets of primers. Each set of primers targets a specific region of DNA and includes a 

forward primer and a reverse primer. The primers initiate the copying mechanism that 

copies or amplifies the target DNA region. The PCR product contains many copies of the 

DNA fragment with the target region if the region is present. The product contains only 

copies of the flanking DNA sequences if the target DNA region is absent. A schematic of 

a PCR experiment is shown in Figure C.2 Columns or lanes A-H contain DNA from 

different species and each bar is an amplified DNA fragment. The last column is a ladder, 

which is a set of DNA fragments of known size that acts as a scale for calculating the size 

of the amplified fragments produced by the different DNA samples. The higher bars (A, 

F, G and H) are the longer fragments that show the presence of the target DNA region. 

The lower bars (B, C, D and E) represent shorter DNA fragments that denote absence of 

    A     B      C     D     E        F      G      H    I  Ladder 
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the target DNA region. Lane I contains DNA from a negative control. A negative control 

in a PCR experiment is DNA where we do not expect our target DNA region. 

We have used the genome sequence from Oryza sativa (Nipponbare, japonica 

cultivar group) for our experimental dataset [164]. We have selected a set of related rice 

species to explore for the presence of the repeat families we have discovered. These 

species are Oryza sativa (indica), Oryza glaberrima , Oryza nivara, Oryza rufipogon and 

Oryza officinalis.  We are using DNA from Arabidopsis thaliana and water as the 

negative controls. Table C.1 lists the DNA sequence for the primer pairs we have used in 

our experiments. We have designed 2 sets of primers for each repeat family, when 

possible. The PCR experimental protocol followed is presented in Table C.2 and the 

chemicals used for the reaction in Table C.3. 

 

Table C.1 

Primers used for amplifying DR1, DR2 and DR3 in PCR experiments 

Primer Comment Sequence (5’-3’) 

DR1clf DR1 cluster, forward TTGATGGGTTGA[AG]ATCATGC  

DR1clr DR1 cluster, reverse AGATGTGCT[TC]TGCCAGAAAAT  

DR1flkf DR1 flanking, forward ATTCTAAATCAAATACACGTAGA 

DR1flkr DR1 flanking, reverse TCAAATTGTTATAAACTATCCGTTAAG 

DR2clf DR2 cluster, forward GCGATCTTGTAGTAGCCGTTG 

DR2clr DR2 cluster, reverse TCAAATCCGGTCGAATCTTT 

DR3clf DR1 cluster, forward GAAACAACCGTTTTCCCGTA 

DR3clr DR2 cluster, reverse GCATT[TA]TGCCCCAATTTTT  

DR3flkf DR3 flanking, forward AAAAATGGGGATGAAAGTATAGG 

DR3flkr DR3 flanking, reverse TTAGGGGCAATTGTGTTTTTG 
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Table C.2 

Protocol used for PCR experiments 

Step Temp (
0
C) Time (min) 

Step 1 94 5 

Step 2 94 1 

(30 cycles) Annealing temp 0.5 

 72 1 

Step 3 72 5 

 

 

Table C.3 

Reactants used for a PCR experiment 

Reactant Amount or final concentration 

Genomic DNA 200 ng 

NEB Taq buffer 1X 

dNTPs 0.25 µM each 

Forward primer 0.3 µM 

Reverse primer 0.3 µM 

Taq polymerase 2.5 units 

Double-distilled water To make 50 mL 
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